Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567546
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Jens C. Jantzen
Title: Einhüllende Algebren halbeinfacher Lie-Algebren
Additional book information: Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge · Band 3, A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1983, 298 pp., DM 118; Approx. U.S. $45.80. ISBN 3-5401-2178-1.

References [Enhancements On Off] (What's this?)

  • James Arthur, On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 1–49. MR 748504, DOI 10.1007/BFb0073144
  • L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
  • 3.
    D. Barbasch and D. Vogan, Problems in primitive ideal theory, Proc. Durham Conf. on Enveloping Algebras (to appear).
  • I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Structure of representations that are generated by vectors of highest weight, Funckcional. Anal. i Priložen. 5 (1971), no. 1, 1–9 (Russian). MR 0291204
  • 5.
    W. Borho, A survey on enveloping algebras of semisimple Lie algebras, Proc. Windsor Conf. on Lie Algebras and Related Topics (to appear).
  • Walter Borho, Peter Gabriel, and Rudolf Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). MR 0376790
  • Walter Borho and Jens Carsten Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), no. 1, 1–53 (German, with English summary). MR 453826, DOI 10.1007/BF01695950
  • Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
  • Michel Duflo, Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of Math. (2) 105 (1977), no. 1, 107–120. MR 430005, DOI 10.2307/1971027
  • Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
  • A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra. I, II, J. Algebra 65 (1980), no. 2, 269–283, 284–306. MR 585721, DOI 10.1016/0021-8693(80)90217-3
  • A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra. III, J. Algebra 73 (1981), no. 2, 295–326. MR 640039, DOI 10.1016/0021-8693(81)90324-0
  • 15.
    D. N. Verma, Structure of certain induced representations of semi-simple Lie algebras, Dissertation, Yale Univ., 1966.

    Review Information:

    Reviewer: David A. Vogan, Jr.
    Journal: Bull. Amer. Math. Soc. 12 (1985), 279-283