Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Braids, hypergeometric functions, and lattices
HTML articles powered by AMS MathViewer

by G. D. Mostow PDF
Bull. Amer. Math. Soc. 16 (1987), 225-246
References
    1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ. 4 (1925), 42-72; Theory of braids, Ann. of Math. (2) 48 (1947), 101-126.
  • Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 123639, DOI 10.2307/1970150
  • P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651, DOI 10.1007/BF02831622
  • 4. L. Euler, Specimen transformationi singularis serierum, Sept. 3, 1778, Nova Acta Petropolitana, Bd XII (1801), 58-78.
  • V. S. Makarov, On a certain class of discrete groups of Lobačevskiĭspace having an infinite fundamental region of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30–33 (Russian). MR 0200348
  • 6. G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Proc. Int. Congr. Math., Vancouver (1974).
  • G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
  • G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), no. 1, 171–276. MR 586876, DOI 10.2140/pjm.1980.86.171
  • G. D. Mostow, Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 10, Phys. Sci., 5948–5950. MR 773821, DOI 10.1073/pnas.78.10.5948
  • P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651, DOI 10.1007/BF02831622
  • Frederick W. Gehring, Quasiconformal mappings, ICM Series, American Mathematical Society, Providence, RI, 1988. A plenary address presented at the International Congress of Mathematicians held in Berkeley, California, August 1986; Introduced by G. D. Mostow. MR 1055358
  • b. G. D. Mostow, On necessary conditions for hypergeometric monodromy groups to be discrete (to appear).
  • David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602, DOI 10.1007/978-3-662-00095-3
  • Émile Picard, Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. Sci. École Norm. Sup. (3) 2 (1885), 357–384 (French). MR 1508769, DOI 10.24033/asens.267
  • 14. L. Pochhammer, Über hypergeometrische Function hoheren Ordnung, J. für Math. 71 (1870), 316-362. 15. B. Riemann, Abh. Kon. Ges. Wiss. Göttingen VII (1957). 16. L. Schläfli, Über die Gaussiche hypergeometrische Reihe, Math. Ann. III (1871), 286-295. 17. H. A. Schwarz, Über diejenige Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres viertes elementes darstellt, Crelle’s J. 75 (1873), 292-335.
  • È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 72 (114) (1967), 471–488; correction, ibid. 73 (115) (1967), 303 (Russian). MR 0207853, DOI 10.1007/BF02950718
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 06B30, 20F36, 33A30
  • Retrieve articles in all journals with MSC (1985): 06B30, 20F36, 33A30
Additional Information
  • Journal: Bull. Amer. Math. Soc. 16 (1987), 225-246
  • MSC (1985): Primary 06B30, 20F36, 33A30
  • DOI: https://doi.org/10.1090/S0273-0979-1987-15510-8
  • MathSciNet review: 876959