Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Equivariant minimax and minimal surfaces in geometric three-manifolds
HTML articles powered by AMS MathViewer

by Jon T. Pitts and J. H. Rubinstein PDF
Bull. Amer. Math. Soc. 19 (1988), 303-309
References
    [HS] J. Hass and P. Scott, The existence of least area surfaces, preprint.
  • Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38. MR 298593
  • H. Karcher, U. Pinkall, and I. Sterling, New minimal surfaces in $S^3$, J. Differential Geom. 28 (1988), no. 2, 169–185. MR 961512, DOI 10.4310/jdg/1214442276
  • [LH] H. B. Lawson, Complete minimal surfaces in S3, Ann. of Math. (2) 90 (1970), 335-374.
  • William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659. MR 678484, DOI 10.2307/2007026
  • [OP] P. Orlik, Seifert fiber spaces, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1981.
  • Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, vol. 27, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 626027, DOI 10.1515/9781400856459
  • Jon T. Pitts and J. H. Rubinstein, Existence of minimal surfaces of bounded topological type in three-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 10, Austral. Nat. Univ., Canberra, 1986, pp. 163–176. MR 857665
  • [PR2] J. Pitts and J. H. Rubinstein, Minimal surfaces of bounded topological type in three-manifolds, preprint.
  • Jon T. Pitts and J. H. Rubinstein, Applications of minimax to minimal surfaces and the topology of $3$-manifolds, Miniconference on geometry and partial differential equations, 2 (Canberra, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 12, Austral. Nat. Univ., Canberra, 1987, pp. 137–170. MR 924434
  • R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
  • Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
  • [SP2] P. Scott, There are no false Seifert fibre spaces with infinite π1, Ann. of Math. (2) 117 (1983), 35-70. [SS] L. Simon and F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary metric, preprint. [TW] W. Thurston, Geometry and topology of 3-manifolds, mimeographed lecture notes, Princeton Univ., 1978.
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 49F22, 53A10
  • Retrieve articles in all journals with MSC (1985): 49F22, 53A10
Additional Information
  • Journal: Bull. Amer. Math. Soc. 19 (1988), 303-309
  • MSC (1985): Primary 49F22, 53A10
  • DOI: https://doi.org/10.1090/S0273-0979-1988-15652-2
  • MathSciNet review: 940493