Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 1567820
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Paulo Ribenboim
Title: The book of prime number records
Additional book information: Springer-Verlag, New York, Berlin, Heidelberg, 1988, xxiii + 476 pp., $49.80. ISBN 0-387-96573-4.
- Richard P. Brent and Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comp. 53 (1989), no. 187, 431–437, S7–S24. MR 968150, DOI https://doi.org/10.1090/S0025-5718-1989-0968150-2
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414
- Jing Run Chen, On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s $L$-functions. II, Sci. Sinica 22 (1979), no. 8, 859–889. MR 549597 H. Dubner, Factorial and primorial primes, J. Recr. Math. 19 (1987), 197-203.
- P. D. T. A. Elliott and H. Halberstam, The least prime in an arithmetic progression, Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 59–61. MR 0272728
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing $\pi (x)$: the Meissel-Lehmer method, Math. Comp. 44 (1985), no. 170, 537–560. MR 777285, DOI https://doi.org/10.1090/S0025-5718-1985-0777285-5 D. N. Lehmer, List of prime numbers from 1 to 10, 006, 721, reprinted by Hafner, New York, 1956.
- Daniel Shanks, Solved and unsolved problems in number theory, 2nd ed., Chelsea Publishing Co., New York, 1978. MR 516658
- Herman J. J. te Riele, Corrigenda: “On the zeros of the Riemann zeta function in the critical strip. II” [Math. Comp. 39 (1982), no. 160, 681–688; MR0669660 (83m:10067)] by R. P. Brent, J. van de Lune, te Riele and D. T. Winter, Math. Comp. 46 (1986), no. 174, 771. MR 829646, DOI https://doi.org/10.1090/S0025-5718-1986-0829646-4
- Jeff Young and Aaron Potler, First occurrence prime gaps, Math. Comp. 52 (1989), no. 185, 221–224. MR 947470, DOI https://doi.org/10.1090/S0025-5718-1989-0947470-1
Review Information:
Reviewer: S. S. Wagstaff, Jr.
Journal: Bull. Amer. Math. Soc. 21 (1989), 365-369
DOI: https://doi.org/10.1090/S0273-0979-1989-15866-7