Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567820
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Paulo Ribenboim
Title: The book of prime number records
Additional book information: Springer-Verlag, New York, Berlin, Heidelberg, 1988, xxiii + 476 pp., $49.80. ISBN 0-387-96573-4.

References [Enhancements On Off] (What's this?)

  • Richard P. Brent and Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comp. 53 (1989), no. 187, 431–437, S7–S24. MR 968150, DOI 10.1090/S0025-5718-1989-0968150-2
  • John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414, DOI 10.1090/conm/022
  • Jing Run Chen, On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s $L$-functions. II, Sci. Sinica 22 (1979), no. 8, 859–889. MR 549597
  • 4.
    H. Dubner, Factorial and primorial primes, J. Recr. Math. 19 (1987), 197-203.
  • P. D. T. A. Elliott and H. Halberstam, The least prime in an arithmetic progression, Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 59–61. MR 0272728
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing $\pi (x)$: the Meissel-Lehmer method, Math. Comp. 44 (1985), no. 170, 537–560. MR 777285, DOI 10.1090/S0025-5718-1985-0777285-5
  • 7.
    D. N. Lehmer, List of prime numbers from 1 to 10, 006, 721, reprinted by Hafner, New York, 1956.
  • Daniel Shanks, Solved and unsolved problems in number theory, 2nd ed., Chelsea Publishing Co., New York, 1978. MR 516658
  • Herman J. J. te Riele, Corrigenda: “On the zeros of the Riemann zeta function in the critical strip. II” [Math. Comp. 39 (1982), no. 160, 681–688; MR0669660 (83m:10067)] by R. P. Brent, J. van de Lune, te Riele and D. T. Winter, Math. Comp. 46 (1986), no. 174, 771. MR 829646, DOI 10.1090/S0025-5718-1986-0829646-4
  • Jeff Young and Aaron Potler, First occurrence prime gaps, Math. Comp. 52 (1989), no. 185, 221–224. MR 947470, DOI 10.1090/S0025-5718-1989-0947470-1

  • Review Information:

    Reviewer: S. S. Wagstaff, Jr.
    Journal: Bull. Amer. Math. Soc. 21 (1989), 365-369