A nonlinear extension of the Borel density theorem: Applications to invariance of geometric structures and to smooth orbit equivalence
HTML articles powered by AMS MathViewer
- by Alessandra Iozzi PDF
- Bull. Amer. Math. Soc. 23 (1990), 115-120
References
- Diego Benardete, Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 499–527. MR 933304, DOI 10.1090/S0002-9947-1988-0933304-3
- Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 123639, DOI 10.2307/1970150
- Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1152, Hermann & Cie, Paris, 1951 (French). MR 0051242
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
- P. Pansu and Robert J. Zimmer, Rigidity of locally homogeneous metrics of negative curvature on the leaves of a foliation, Israel J. Math. 68 (1989), no. 1, 56–62. MR 1035880, DOI 10.1007/BF02764968
- Nolan R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287–369. MR 727854, DOI 10.1007/BFb0071436
- Dave Witte, Rigidity of some translations on homogeneous spaces, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 117–119. MR 766966, DOI 10.1090/S0273-0979-1985-15308-X
- Dave Witte, Topological equivalence of foliations of homogeneous spaces, Trans. Amer. Math. Soc. 317 (1990), no. 1, 143–166. MR 942428, DOI 10.1090/S0002-9947-1990-0942428-5
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152–210. MR 900826, DOI 10.1007/978-1-4899-6664-3_{6}
- Robert J. Zimmer, On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83 (1986), no. 3, 411–424. MR 827360, DOI 10.1007/BF01394415
- Robert J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 237–253. MR 661822, DOI 10.1017/s0143385700009251
Additional Information
- Journal: Bull. Amer. Math. Soc. 23 (1990), 115-120
- MSC (1985): Primary 22DXX, 22E40, 28DXX, 53C35, 57R30, 57S20
- DOI: https://doi.org/10.1090/S0273-0979-1990-15915-4
- MathSciNet review: 1021792