Finite sections of Segal-Bargmann space Toeplitz operators with polyradially continuous symbols
HTML articles powered by AMS MathViewer
- by Albrecht Böttcher and Hartmut Wolf PDF
- Bull. Amer. Math. Soc. 25 (1991), 365-372
References
- Sheldon Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1–50. MR 958569
- C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), no. 3, 273–299. MR 859136, DOI 10.1016/0022-1236(86)90099-6
- C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813–829. MR 882716, DOI 10.1090/S0002-9947-1987-0882716-4
- Albrecht Böttcher, Truncated Toeplitz operators on the polydisk, Monatsh. Math. 110 (1990), no. 1, 23–32. MR 1072725, DOI 10.1007/BF01571274
- Albrecht Böttcher and Bernd Silbermann, The finite section method for Toeplitz operators on the quarter-plane with piecewise continuous symbols, Math. Nachr. 110 (1983), 279–291. MR 721280, DOI 10.1002/mana.19831100120
- Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990. MR 1071374, DOI 10.1007/978-3-662-02652-6
- R. G. Douglas and Roger Howe, On the $C^*$-algebra of Toeplitz operators on the quarterplane, Trans. Amer. Math. Soc. 158 (1971), 203–217. MR 288591, DOI 10.1090/S0002-9947-1971-0288591-1
- I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
- A. V. Kozak, The reduction method for multidimensional discrete convolutions, Mat. Issled. 8 (1973), no. 3(29), 157–160, 184 (Russian). MR 0336426
- V. S. Pilidi, Multidimensional bisingular operators, Dokl. Akad. Nauk SSSR 201 (1971), 787–789 (Russian). MR 0301578
- I. B. Simonenko, Multidimensional discrete convolutions, Mat. Issled. 3 (1968), no. vyp. 1 (7), 108–122 (Russian). MR 0257763
- Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants, Advances in Math. 13 (1974), 284–322. MR 409511, DOI 10.1016/0001-8708(74)90072-3
Additional Information
- Journal: Bull. Amer. Math. Soc. 25 (1991), 365-372
- MSC (1985): Primary 47B35; Secondary 45L05
- DOI: https://doi.org/10.1090/S0273-0979-1991-16078-7
- MathSciNet review: 1090404