## Trace formulae and inverse spectral theory for Schrödinger operators

HTML articles powered by AMS MathViewer

- by F. Gesztesy, H. Holden, B. Simon and Z. Zhao PDF
- Bull. Amer. Math. Soc.
**29**(1993), 250-255 Request permission

## Abstract:

We extend the well-known trace formula for Hill’s equation to general one-dimensional Schrödinger operators. The new function $\xi$, which we introduce, is used to study absolutely continuous spectrum and inverse problems.## References

- J. Avron, P. H. M. van Mouche, and B. Simon,
*On the measure of the spectrum for the almost Mathieu operator*, Comm. Math. Phys.**132**(1990), no. 1, 103–118. MR**1069202**, DOI 10.1007/BF02278001 - Göran Borg,
*Uniqueness theorems in the spectral theory of $y''+(\lambda -q(x))y=0$*, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276–287. MR**0058063** - Walter Craig,
*The trace formula for Schrödinger operators on the line*, Comm. Math. Phys.**126**(1989), no. 2, 379–407. MR**1027503**, DOI 10.1007/BF02125131 - Joseph Avron and Barry Simon,
*Almost periodic Schrödinger operators. II. The integrated density of states*, Duke Math. J.**50**(1983), no. 1, 369–391. MR**700145**, DOI 10.1215/S0012-7094-83-05016-0 - H. Flaschka,
*On the inverse problem for Hill’s operator*, Arch. Rational Mech. Anal.**59**(1975), no. 4, 293–309. MR**387711**, DOI 10.1007/BF00250422
F. Gesztesy and B. Simon, - F. Gesztesy, H. Holden, B. Simon, and Z. Zhao,
*Higher order trace relations for Schrödinger operators*, Rev. Math. Phys.**7**(1995), no. 6, 893–922. MR**1348829**, DOI 10.1142/S0129055X95000347 - F. Gesztesy, H. Holden, and B. Simon,
*Absolute summability of the trace relation for certain Schrödinger operators*, Comm. Math. Phys.**168**(1995), no. 1, 137–161. MR**1324393**, DOI 10.1007/BF02099586 - Shinichi Kotani,
*Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators*, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 225–247. MR**780760**, DOI 10.1016/S0924-6509(08)70395-7 - S. Kotani and M. Krishna,
*Almost periodicity of some random potentials*, J. Funct. Anal.**78**(1988), no. 2, 390–405. MR**943504**, DOI 10.1016/0022-1236(88)90125-5
M. G. Krein, - Y. Last,
*A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants*, Comm. Math. Phys.**151**(1993), no. 1, 183–192. MR**1201659**, DOI 10.1007/BF02096752 - H. P. McKean and P. van Moerbeke,
*The spectrum of Hill’s equation*, Invent. Math.**30**(1975), no. 3, 217–274. MR**397076**, DOI 10.1007/BF01425567 - Barry Simon,
*Kotani theory for one-dimensional stochastic Jacobi matrices*, Comm. Math. Phys.**89**(1983), no. 2, 227–234. MR**709464**, DOI 10.1007/BF01211829 - E. Trubowitz,
*The inverse problem for periodic potentials*, Comm. Pure Appl. Math.**30**(1977), no. 3, 321–337. MR**430403**, DOI 10.1002/cpa.3160300305 - Stephanos Venakides,
*The infinite period limit of the inverse formalism for periodic potentials*, Comm. Pure Appl. Math.**41**(1988), no. 1, 3–17. MR**917122**, DOI 10.1002/cpa.3160410103

*The xi function*, Ann. of Math (2), to be submitted.

*Perturbation determinants and a formula for the traces of unitary and self-adjoint operators*, Soviet Math. Dokl.

**3**(1962), 707-710.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Bull. Amer. Math. Soc.
**29**(1993), 250-255 - MSC (2000): Primary 34L40; Secondary 34A55, 34B24, 47E05
- DOI: https://doi.org/10.1090/S0273-0979-1993-00431-2
- MathSciNet review: 1215308