Polynomial invariants of finite groups. A survey of recent developments
Author:
Larry Smith
Journal:
Bull. Amer. Math. Soc. 34 (1997), 211-250
MSC (1991):
Primary 13A50; Secondary 55S10
DOI:
https://doi.org/10.1090/S0273-0979-97-00724-6
MathSciNet review:
1433171
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The polynomial invariants of finite groups have been studied for more than a century now and continue to find new applications and generate interesting problems. In this article we will survey some of the recent developments coming primarily from algebraic topology and the rediscovery of old open problems.
- J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271–282. MR 294450, DOI https://doi.org/10.1016/0040-9383%2871%2990020-6
- J. F. Adams and C. W. Wilkerson, Finite $H$-spaces and algebras over the Steenrod algebra, Ann. of Math. (2) 111 (1980), no. 1, 95–143. MR 558398, DOI https://doi.org/10.2307/1971218
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096
- Gert Almkvist, Some formulas in invariant theory, J. Algebra 77 (1982), no. 2, 338–359. MR 673120, DOI https://doi.org/10.1016/0021-8693%2882%2990258-7
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Stanisław Balcerzyk and Tadeusz Józefiak, Commutative Noetherian and Krull rings, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; distributed by Prentice Hall, Inc., Englewood Cliffs, NJ, 1989. Translated from the Polish by Maciej Juniewicz and Sergiusz Kowalski. MR 1130610
- Stanisław Balcerzyk and Tadeusz Józefiak, Commutative rings, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; distributed by Prentice Hall, Inc., Englewood Cliffs, NJ, 1989. Dimension, multiplicity and homological methods; Translated from the Polish by Maciej Juniewicz, Sergiusz Kowalski and Marcin Kuczma. MR 1084368
- G. Barbançon and M. Raïs, Sur le théorème de Hilbert différentiable pour les groupes linéaires finis (d’après E. Noether), Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 355–373 (1984) (French). MR 740075
- D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. MR 1249931
- Marie-José Bertin, Anneau des invariants du groupe alterné, en caractéristique $2$, Bull. Sci. Math. (2) 94 (1970), 65–72 (French). MR 266917
- Marie-José Bertin, Anneaux d’invariants d’anneaux de polynomes, en caractéristique $p$, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A653–A656 (French). MR 215826
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- D. Bourguiba and S. Zarati, Depth and Steenrod operations, Preprint, Univ. of Tunis II, 1995.
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), no. 3, 329–332. MR 649764, DOI https://doi.org/10.1016/0040-9383%2882%2990015-5
- H. E. A. Campbell, J. C. Harris, and D. L. Wehlau, On rings of invariants of non-modular Abelian groups, Preprint, Queens Univ., 1996.
- H. E. A. Campbell and I. P. Hughes, $2$-Dimensional invariants of $\mathrm {GL}(2,\mathbb {F}_p)$ and some of its subgroups over the field $\mathbb {F}_p$, Preprint, Queens Univ., 1993.
- H. E. A. Campbell, I. Hughes, and R. D. Pollack, Rings of invariants and $p$-Sylow subgroups, Canad. Math. Bull. 34 (1991), no. 1, 42–47. MR 1108927, DOI https://doi.org/10.4153/CMB-1991-007-0
- H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), 307–336.
- H. Cartan, Quotient d’un éspace analytique par un groupe d’automorphismes, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz (eds: R. H. Fox, D. C. Spencer and A. W. Tucker), Princeton Univ. Press, Princeton, 1957.
- H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, 1956.
- Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. MR 367979
- P. M. Cohen, Algebra, second ed., J. Wiley, New York, 1989.
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. An introduction to computational algebraic geometry and commutative algebra. MR 1189133
- L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75–98.
- ---, Binary modular groups and their invariants, Amer. J. Math. 33 (1911), 175–192.
- ---, On finite algebras, Nachr. Akad. Wiss. Göttingen (1905), 358–393.
- Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958. With an introduction by W. Magnus. MR 0104735
- ---, The collected mathematical papers of Leonard Eugene Dickson, 6 volumes, Chelsea, New York, 1975. ; MR 85e:01059
- W. G. Dwyer and C. W. Wilkerson, Kähler differentials, the $T$-functor, and a theorem of Steinberg, Preprint, the Hopf archives (hopf@math.purdue.edu), 1996.
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- D. Engelmann, Optimal, pseudooptimal and perfect homogeneous systems of parameters for rings of invariants, Preprint, Humboldt Univ., 1996.
- Geir Ellingsrud and Tor Skjelbred, Profondeur d’anneaux d’invariants en caractéristique $p$, Compositio Math. 41 (1980), no. 2, 233–244 (French). MR 581583
- Jacques Dixmier, Paul Erdős, and Jean-Louis Nicolas, Sur le nombre d’invariants fondamentaux des formes binaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 8, 319–322 (French, with English summary). MR 909556
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- M. Feshbach, The image of the trace in the ring of invariants, Preprint, Univ. Minnesota, 1981.
- Mark Feshbach, $p$-subgroups of compact Lie groups and torsion of infinite height in $H^{\ast } (BG)$. II, Michigan Math. J. 29 (1982), no. 3, 299–306. MR 674283
- P. Fleischmann, On the ring of vector invariants for the symmetric group, Preprint, Institute for Experimental Mathematics, Essen, 1996.
- P. Fleischmann and W. Lempken, On generators of modular invariant rings of finite groups, Preprint, Institute for Experimental Mathematics, Essen, 1996.
- Robert M. Fossum and Phillip A. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic $p$, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 189–199. MR 382257
- A. M. Garsia and D. Stanton, Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. in Math. 51 (1984), no. 2, 107–201. MR 736732, DOI https://doi.org/10.1016/0001-8708%2884%2990005-7
- O. E. Glenn, Modular invariant processes, Bull. Amer. Math. Soc. 21 (1914–15), 167–173.
- Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J. Symbolic Comput. 19 (1995), no. 4, 285–291. MR 1339909, DOI https://doi.org/10.1006/jsco.1995.1017
- N. L. Gordeev, Coranks of elements of linear groups and the complexity of algebras of invariants, Algebra i Analiz 2 (1990), no. 2, 39–64 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 2, 245–267. MR 1062262
- D. Hilbert, Über die Theorie der Algebraischen Formen, Math. Ann. 36 (1890), 473–534.
- ---, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313–373.
- David Hilbert, Hilbert’s invariant theory papers, Lie Groups: History, Frontiers and Applications, VIII, Math Sci Press, Brookline, Mass., 1978. Translated from the German by Michael Ackerman; With comments by Robert Hermann. MR 512034
- ---, Theory of algebraic invariants (translated by Reinhard C. Laudenbacher), Cambridge Univ. Press, Cambridge, 1993.
- Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- Howard Hiller and Larry Smith, On the realization and classification of cyclic extensions of polynomial algebras over the Steenrod algebra, Proc. Amer. Math. Soc. 100 (1987), no. 4, 731–738. MR 894446, DOI https://doi.org/10.1090/S0002-9939-1987-0894446-9
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI https://doi.org/10.2307/2373744
- Shou-Jen Hu and Ming-chang Kang, Efficient generation of the ring of invariants, J. Algebra 180 (1996), no. 2, 341–363. MR 1378534, DOI https://doi.org/10.1006/jabr.1996.0071
- Victor G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 74–108. MR 718127, DOI https://doi.org/10.1007/BFb0063236
- Victor G. Kac and Dale H. Peterson, Generalized invariants of groups generated by reflections, Geometry today (Rome, 1984) Progr. Math., vol. 60, Birkhäuser Boston, Boston, MA, 1985, pp. 231–249. MR 895156
- G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), 351–366.
- G. Kemper and G. Malle, The finite irreducible linear groups with polynomial ring of invariants, Preprint, Univ. Heidelberg, 1996.
- N. Killius, Some modular invariant theory of finite groups with particular emphasis on the cyclic group, Diplomarbeit, Univ. Göttingen, 1996.
- Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). MR 768181
- Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer (eds.), Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, vol. 13, Birkhäuser Verlag, Basel, 1989 (German). MR 1044582
- Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. I, Amer. J. Math. 116 (1994), no. 2, 327–360. MR 1269607, DOI https://doi.org/10.2307/2374932
- K. Kuhnigk, Transfer in Invariantenringen, Diplomarbeit, Univ. Göttingen (to appear).
- Peter S. Landweber and Robert E. Stong, The depth of rings of invariants over finite fields, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 259–274. MR 894515, DOI https://doi.org/10.1007/BFb0072984
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244 (French). With an appendix by Michel Zisman. MR 1179079
- J. Lannes and S. Zarati, Théorie de Smith algébrique et classification des $H^*V$-$\scr U$-injectifs, Bull. Soc. Math. France 123 (1995), no. 2, 189–223 (French, with English and French summaries). MR 1340287
- John Martino and Stewart Priddy, Stable homotopy classification of $BG^hat _p$, Topology 34 (1995), no. 3, 633–649. MR 1341812, DOI https://doi.org/10.1016/0040-9383%2894%2900040-R
- W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47–65. MR 189032, DOI https://doi.org/10.1016/0040-9383%2865%2990048-0
- V. L. Popov, Syzygies in the theory of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, 544–622 (Russian). MR 703596
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Haynes Miller and Clarence Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), no. 3, 293–307. MR 629336, DOI https://doi.org/10.1016/0022-4049%2881%2990104-3
- T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152–1156.
- Haruhisa Nakajima, Invariants of reflection groups in positive characteristics, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 6, 219–221. MR 542396
- Haruhisa Nakajima, Invariants of finite groups generated by pseudoreflections in positive characteristic, Tsukuba J. Math. 3 (1979), no. 1, 109–122. MR 543025, DOI https://doi.org/10.21099/tkbjm/1496158618
- Haruhisa Nakajima, Invariants of finite abelian groups generated by transvections, Tokyo J. Math. 3 (1980), no. 2, 201–214. MR 605089, DOI https://doi.org/10.3836/tjm/1270472993
- Haruhisa Nakajima, On some invariant subrings of polynomial rings in positive characteristics, Proceedings of the 13th Symposium on Ring Theory (Okayama Univ., Okayama, 1980) Okayama Univ., Okayama, 1981, pp. 91–107. MR 603638
- Haruhisa Nakajima, Modular representations of $p$-groups with regular rings of invariants, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 10, 469–473. MR 605765
- Haruhisa Nakajima, Modular representations of abelian groups with regular rings of invariants, Nagoya Math. J. 86 (1982), 229–248. MR 661227
- Haruhisa Nakajima, Relative invariants of finite groups, J. Algebra 79 (1982), no. 1, 218–234. MR 679980, DOI https://doi.org/10.1016/0021-8693%2882%2990326-X
- Haruhisa Nakajima, Rings of invariants of finite groups which are hypersurfaces, J. Algebra 80 (1983), no. 2, 279–294. MR 691804, DOI https://doi.org/10.1016/0021-8693%2883%2990001-7
- Haruhisa Nakajima, Regular rings of invariants of unipotent groups, J. Algebra 85 (1983), no. 2, 253–286. MR 725082, DOI https://doi.org/10.1016/0021-8693%2883%2990094-7
- Haruhisa Nakajima, Rings of invariants of finite groups which are hypersurfaces. II, Adv. in Math. 65 (1987), no. 1, 39–64. MR 893470, DOI https://doi.org/10.1016/0001-8708%2887%2990018-1
- Amnon Neeman, The connection between a conjecture of Carlisle and Kropholler, now a theorem of Benson and Crawley-Boevey, and Grothendieck’s Riemann-Roch and duality theorems, Comment. Math. Helv. 70 (1995), no. 3, 339–349. MR 1340097, DOI https://doi.org/10.1007/BF02566011
- F. Neumann, M. D. Neusel, and L. Smith, Rings of generalized and stable invariants of pseudoreflections and pseudoreflection groups, J. Algebra 182 (1996), 85–122.
- ---, Rings of generalized invariants and classifying spaces of compact Lie groups, Preprint Nr. 14, Otto-von-Guericke-Universität Magdeburg, 1996.
- M. D. Neusel, Invariants of some abelian $p$-groups in characteristic $p$, Proc. Amer. Math. Soc. (to appear).
- ---, Integral extensions of unstable algebras over the Steenrod algebra, Preprint, Royal Institute of Technology, Stockholm, 1996.
- ---, $\mathcal {P}^*$-Commutative algebra (to appear).
- M. D. Neusel and L. Smith, The Lasker-Noether theorem for $\mathcal {P}^*$-invariant ideals, Preprint Nr. 26, Otto-von-Guericke-Universität Magdeburg, 1995.
- E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89–92.
- ---, Der Endlichkeitssatz der Invarianten endlicher linear Gruppen der Characteristik $p$, Nachr. Akad. Wiss. Göttingen (1926), 28–35.
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Victor Reiner, On Göbel’s bound for invariants of permutation groups, Arch. Math. (Basel) 65 (1995), no. 6, 475–480. MR 1360064, DOI https://doi.org/10.1007/BF01194163
- V. Reiner and L. Smith, Systems of parameters for rings of invariants, Preprint, Göttingen, 1996.
- David R. Richman, On vector invariants over finite fields, Adv. Math. 81 (1990), no. 1, 30–65. MR 1051222, DOI https://doi.org/10.1016/0001-8708%2890%2990003-6
- ---, On vector invariants over finite fields, Adv. in Math. (to appear).
- Barbara J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 35–66. MR 1180987, DOI https://doi.org/10.1007/BFb0083501
- L. Schwartz, Lectures on Lannes technology, Univ. of Chicago Press, Chicago, 1994.
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468
- Jean-Pierre Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413–420 (French). MR 180619, DOI https://doi.org/10.1016/0040-9383%2865%2990006-6
- Jean-Pierre Serre, Représentations linéaires des groupes finis, Third revised edition, Hermann, Paris, 1978 (French). MR 543841
- William M. Singer, Iterated loop functors and the homology of the Steenrod algebra, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 83–101. MR 478155, DOI https://doi.org/10.1016/0022-4049%2877%2990043-3
- William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493–523. MR 1022818, DOI https://doi.org/10.1007/BF01221587
- N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), no. 2, 82–107. MR 424398, DOI https://doi.org/10.2307/2319929
- Larry Smith, Realizing certain polynomial algebras as cohomology rings of spaces of finite type fibered over $\times B{\rm U}(d)$, Pacific J. Math. 126 (1987), no. 2, 361–377. MR 869783
- ---, $e$-Invariants and finite covers, II, Trans. Amer. Math. Soc. 347 (1995), 5009–5021.
- Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644
- Larry Smith, E. Noether’s bound in the invariant theory of finite groups, Arch. Math. (Basel) 66 (1996), no. 2, 89–92. MR 1367149, DOI https://doi.org/10.1007/BF01273338
- Larry Smith, ${\scr P}^*$-invariant ideals in rings of invariants, Forum Math. 8 (1996), no. 3, 319–342. MR 1387699, DOI https://doi.org/10.1515/form.1996.8.319
- Larry Smith and R. E. Stong, On the invariant theory of finite groups: orbit polynomials and splitting principles, J. Algebra 110 (1987), no. 1, 134–157. MR 904185, DOI https://doi.org/10.1016/0021-8693%2887%2990040-8
- Larry Smith and R. M. Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), no. 2, 303–313. MR 712642, DOI https://doi.org/10.1090/S0002-9939-1983-0712642-4
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475–511. MR 526968, DOI https://doi.org/10.1090/S0273-0979-1979-14597-X
- Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 167535, DOI https://doi.org/10.1090/S0002-9947-1964-0167535-3
- Robert Steinberg, On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 699–707. MR 927606
- Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980
- B. L. van der Waerden, Modern algebra I, II (translated by F. Blum), Ungar, New York, 1949.
- H. Weyl, The classical groups, second ed., Princeton Univ. Press, Princeton, 1946.
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI https://doi.org/10.1090/conm/019/711066
- R. M. W. Wood, An introduction to the Steenrod algebra through differential operators, Preprint, Manchester Univ., 1995.
- Wu Wen-Tsün, Sur les puissances de Steenrod, Colloque de Topologie de Strasbourg, 1951.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 13A50, 55S10
Retrieve articles in all journals with MSC (1991): 13A50, 55S10
Additional Information
Larry Smith
Affiliation:
AG-Invariantentheorie, Mittelweg 3, D 37133 Friedland, Germany
Email:
larry@sunrise.uni-math.gwdg.de, agi@sunrise.uni-math.gwdg.de
Keywords:
Polynomial invariants of finite groups
Received by editor(s):
January 3, 1997
Article copyright:
© Copyright 1997
American Mathematical Society