The octonions
HTML articles powered by AMS MathViewer
- by John C. Baez PDF
- Bull. Amer. Math. Soc. 39 (2002), 145-205
Erratum: Bull. Amer. Math. Soc. 42 (2005), 213-213.
Abstract:
The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics. Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also touch upon their applications in quantum logic, special relativity and supersymmetry.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- J. F. Adams, Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May; Edited by Zafer Mahmud and Mamoru Mimura. MR 1428422
- M. F. Atiyah and F. Hirzebruch, Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223–226. MR 126282, DOI 10.1017/s0305004100035088
- Helena Albuquerque and Shahn Majid, Quasialgebra structure of the octonions, J. Algebra 220 (1999), no. 1, 188–224. MR 1713433, DOI 10.1006/jabr.1998.7850 BS Chris H. Barton and Anthony Sudbery, Magic squares of Lie algebras, preprint available as math.RA/0001083.
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- F. van der Blij, History of the octaves, Simon Stevin 34 (1960/61), 106–125. MR 130283
- F. van der Blij and T. A. Springer, Octaves and triality, Nieuw Arch. Wisk. (3) 8 (1960), 158–169. MR 123622 Boos Dominik Boos, Ein tensorkategorieller Zugang zum Satz von Hurwitz, Diplomarbeit, ETH Zurich, March 1998.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87–89. MR 102804, DOI 10.1090/S0002-9904-1958-10166-4
- Robert B. Brown, Groups of type $E_{7}$, J. Reine Angew. Math. 236 (1969), 79–102. MR 248185, DOI 10.1515/crll.1969.236.79 Cartan0 Élie Cartan, Sur la structure des groupes de tranformations finis et continus, Thèse, Paris, Nony, 1894. Cartan Élie Cartan, Les groupes réels simples finis et continus, Ann. Sci. École Norm. Sup. 31 (1914), 255–262. Cartan2 Élie Cartan, Nombres complexes, in Encyclopédie des sciences mathématiques, 1, ed. J. Molk, 1908, 329–468. Cartan3 Élie Cartan, Le principe de dualité et la théorie des groupes simple et semi-simples, Bull. Sci. Math. 49 (1925), 361–374. Cayley Arthur Cayley, On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions, Philos. Mag. 26 (1845), 208–211. Cayley2 Arthur Cayley, On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions (appendix only), in The Collected Mathematical Papers, Johnson Reprint Co., New York, 1963, p. 127. CMT Sultan Catto, Carlos J. Moreno and Chia-Hsiung Tze, Octonionic Structures in Physics, to appear.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Yvonne Choquet-Bruhat and Cécile DeWitt-Morette, Analysis, manifolds and physics. Part II, North-Holland Publishing Co., Amsterdam, 1989. 92 applications. MR 1016603 Clifford William K. Clifford, Applications of Grassmann’s extensive algebra, Amer. Jour. Math. 1 (1878), 350–358.
- F. R. Cohen, On the Whitehead square, Cayley-Dickson algebras, and rational functions, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 55–62. Papers in honor of José Adem (Spanish). MR 1317562
- E. Corrigan and T. J. Hollowood, The exceptional Jordan algebra and the superstring, Comm. Math. Phys. 122 (1989), no. 3, 393–410. MR 998659, DOI 10.1007/BF01238434
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Michael J. Crowe, A history of vector analysis. The evolution of the idea of a vectorial system, University of Notre Dame Press, Notre Dame, Ind.-London, 1967. MR 0229496 Curtis C. W. Curtis, The four and eight square problem and division algebras, in Studies in Modern Algebra, ed. A. Albert, Prentice–Hall, Englewood Cliffs, New Jersey, 1963, pp. 100–125.
- Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison, and Edward Witten (eds.), Quantum fields and strings: a course for mathematicians. Vol. 1, 2, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. MR 1701618 Dickson Leonard E. Dickson, On quaternions and their generalization and the history of the eight square theorem, Ann. Math. 20 (1919), 155–171.
- Geoffrey M. Dixon, Division algebras: octonions, quaternions, complex numbers and the algebraic design of physics, Mathematics and its Applications, vol. 290, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1307379, DOI 10.1007/978-1-4757-2315-1
- M. J. Duff (ed.), The world in eleven dimensions: supergravity, supermembranes and M-theory, Studies in High Energy Physics Cosmology and Gravitation, IOP Publishing, Bristol, 1999. MR 1735754
- Noam D. Elkies and Benedict H. Gross, The exceptional cone and the Leech lattice, Internat. Math. Res. Notices 14 (1996), 665–698. MR 1411589, DOI 10.1155/S1073792896000426 Emch Gerard G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York, 1972.
- J. M. Evans, Supersymmetric Yang-Mills theories and division algebras, Nuclear Phys. B 298 (1988), no. 1, 92–108. MR 929226, DOI 10.1016/0550-3213(88)90305-7
- John R. Faulkner, A construction of Lie algebras from a class of ternary algebras, Trans. Amer. Math. Soc. 155 (1971), 397–408. MR 294424, DOI 10.1090/S0002-9947-1971-0294424-X
- J. R. Faulkner and J. C. Ferrar, Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc. 9 (1977), no. 1, 1–35. MR 444729, DOI 10.1112/blms/9.1.1
- Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E^{(1)}_8$, Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991. MR 1123265, DOI 10.1090/conm/121
- F. D. Veldkamp, In honor of Hans Freudenthal on his eightieth birthday, Geom. Dedicata 19 (1985), no. 1, 2–5. MR 797150, DOI 10.1007/BF00233100
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946 Freudenthal3 Hans Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (1964), 145–190. Freudenthal5 Hans Freudenthal, Bericht über die Theorie der Rosenfeldschen elliptischen Ebenen, in Raumtheorie, Wege Der Forschung, CCLXX, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978, pp. 283–286.
- Lynn E. Garner, An outline of projective geometry, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 600860 Graves Robert Perceval Graves, Life of Sir William Rowan Hamilton, 3 volumes, Arno Press, New York, 1975.
- Michael B. Green, John H. Schwarz, and Edward Witten, Superstring theory. Vol. 1, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1988. Introduction. MR 952374
- Bernard Grossman, Thomas W. Kephart, and James D. Stasheff, Solutions to Yang-Mills field equations in eight dimensions and the last Hopf map, Comm. Math. Phys. 96 (1984), no. 4, 431–437. MR 775040, DOI 10.1007/BF01212529
- Murat Günaydin, Generalized conformal and superconformal group actions and Jordan algebras, Modern Phys. Lett. A 8 (1993), no. 15, 1407–1416. MR 1222801, DOI 10.1142/S0217732393001124 GKN Murat Günaydin, Kilian Koepsell, and Hermann Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Comm. Math. Phys. 221 (2001), 57–76
- M. Günaydin, C. Piron, and H. Ruegg, Moufang plane and octonionic quantum mechanics, Comm. Math. Phys. 61 (1978), no. 1, 69–85. MR 503050, DOI 10.1007/BF01609468
- Feza Gürsey and Chia-Hsiung Tze, On the role of division, Jordan and related algebras in particle physics, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1626607, DOI 10.1142/3282 Hamilton William Rowan Hamilton, Four and eight square theorems, in Appendix 3 of The Mathematical Papers of William Rowan Hamilton, vol. 3, eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 648–656.
- Thomas L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, Md., 1980. MR 618834
- F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Inc., Boston, MA, 1990. MR 1045637 Hurwitz Adolf Hurwitz, Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen (1898), 309–316.
- Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR 1249482, DOI 10.1007/978-1-4757-2261-1 Jordan Pascual Jordan, Über eine Klasse nichtassociativer hyperkomplexer Algebren, Nachr. Ges. Wiss. Göttingen (1932), 569–575.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944 JNW Pascual Jordan, John von Neumann, Eugene Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1934), 29–64.
- Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733
- I. L. Kantor and A. S. Solodovnikov, Hypercomplex numbers, Springer-Verlag, New York, 1989. An elementary introduction to algebras; Translated from the Russian by A. Shenitzer. MR 996029, DOI 10.1007/978-1-4612-3650-4 Kervaire Michel Kervaire, Non-parallelizability of the $n$ sphere for $n > 7$, Proc. Nat. Acad. Sci. USA 44 (1958), 280–283. Killing Wilhelm Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen I, Math. Ann. 31 (1888), 252–290. II, 33 (1889) 1–48. III, 34 (1889), 57–122. IV, 36 (1890), 161–189.
- Taichiro Kugo and Paul Townsend, Supersymmetry and the division algebras, Nuclear Phys. B 221 (1983), no. 2, 357–380. MR 709052, DOI 10.1016/0550-3213(83)90584-9
- Greg Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109–151. MR 1403861, DOI 10.1007/BF02101184 LM J. M. Landsberg and L. Manivel, The projective geometry of Freudenthal’s magic square, J. Algebra 239 (2001), 477–512.
- Jaak Lõhmus, Eugene Paal, and Leo Sorgsepp, Nonassociative algebras in physics, Hadronic Press Monographs in Mathematics, Hadronic Press, Inc., Palm Harbor, FL, 1994. MR 1320709, DOI 10.29083/Monograph1
- Corinne A. Manogue and Tevian Dray, Octonionic Möbius transformations, Modern Phys. Lett. A 14 (1999), no. 19, 1243–1255. MR 1703958, DOI 10.1142/S0217732399001346
- Corinne A. Manogue and Jörg Schray, Finite Lorentz transformations, automorphisms, and division algebras, J. Math. Phys. 34 (1993), no. 8, 3746–3767. MR 1230549, DOI 10.1063/1.530056
- Jörg Schray and Corinne A. Manogue, Octonionic representations of Clifford algebras and triality, Found. Phys. 26 (1996), no. 1, 17–70. MR 1380124, DOI 10.1007/BF02058887
- Kevin McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), no. 4, 612–627. MR 466235, DOI 10.1090/S0002-9904-1978-14503-0
- Kurt Meyberg, Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 162–174, 175–190 (German). MR 0225838, DOI 10.1016/S1385-7258(68)50018-0 Moreno R. Guillermo Moreno, The zero divisors of the Cayley–Dickson algebras over the real numbers, preprint available at q-alg/9710013. Moufang Ruth Moufang, Alternativkörper und der Satz vom vollständigen Vierseit, Abh. Math. Sem. Hamburg 9 (1933), 207–222.
- Susumu Okubo, Introduction to octonion and other non-associative algebras in physics, Montroll Memorial Lecture Series in Mathematical Physics, vol. 2, Cambridge University Press, Cambridge, 1995. MR 1356224, DOI 10.1017/CBO9780511524479
- È. B. Vinberg (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg. MR 1349140, DOI 10.1007/978-3-662-03066-0
- S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 0000088, DOI 10.1007/BF03046993
- Ian R. Porteous, Topological geometry, 2nd ed., Cambridge University Press, Cambridge-New York, 1981. MR 606198, DOI 10.1017/CBO9780511623943 Rosenfeld1 Boris A. Rosenfeld, Geometrical interpretation of the compact simple Lie groups of the class $\mathrm {E}$ (Russian), Dokl. Akad. Nauk. SSSR 106 (1956), 600-603.
- Boris Rosenfeld, Geometry of Lie groups, Mathematics and its Applications, vol. 393, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1443207, DOI 10.1007/978-1-4757-5325-7
- Markus Rost, On the dimension of a composition algebra, Doc. Math. 1 (1996), No. 10, 209–214. MR 1397790
- Helmut Salzmann, Dieter Betten, Theo Grundhöfer, Hermann Hähl, Rainer Löwen, and Markus Stroppel, Compact projective planes, De Gruyter Expositions in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995. With an introduction to octonion geometry. MR 1384300, DOI 10.1515/9783110876833
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Richard D. Schafer, An introduction to nonassociative algebras, Dover Publications, Inc., New York, 1995. Corrected reprint of the 1966 original. MR 1375235 Schray Jörg Schray, Octonions and Supersymmetry, Ph.D. thesis, Department of Physics, Oregon State University, 1994.
- G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical Quantum Gravity 4 (1987), no. 2, 227–236. MR 879887, DOI 10.1088/0264-9381/4/2/006
- T. A. Springer, The projective octave plane. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 74–101. MR 0126196, DOI 10.1016/S1385-7258(60)50011-4
- T. A. Springer, Characterization of a class of cubic forms, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 259–265. MR 0138661, DOI 10.1016/S1385-7258(62)50024-3
- T. A. Springer, On the geometric algebra of the octave planes, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 451–468. MR 0142045, DOI 10.1016/S1385-7258(62)50043-7
- Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974, DOI 10.1007/978-3-662-12622-6
- Fredrick W. Stevenson, Projective planes, W. H. Freeman and Co., San Francisco, Calif., 1972. MR 0344995
- A. Sudbery, Octonionic description of exceptional Lie superalgebras, J. Math. Phys. 24 (1983), no. 8, 1986–1988. MR 713528, DOI 10.1063/1.525956
- A. Sudbery, Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A 17 (1984), no. 5, 939–955. MR 743176, DOI 10.1088/0305-4470/17/5/018
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 223–237 (French). MR 0219578, DOI 10.1016/S1385-7258(66)50028-2
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. MR 805158 Vinberg E. B. Vinberg, A construction of exceptional simple Lie groups (Russian), Tr. Semin. Vektorn. Tensorn. Anal. 13 (1966), 7–9. Zorn Max Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8 (1930), 123–147. Zorn2 Max Zorn, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. Hamburg 9 (1933), 395–402.
Additional Information
- John C. Baez
- Affiliation: Department of Mathematics, University of California, Riverside, CA 92521
- Email: baez@math.ucr.edu
- Received by editor(s): May 31, 2001
- Received by editor(s) in revised form: August 2, 2001
- Published electronically: December 21, 2001
- © Copyright 2001 John C. Baez
- Journal: Bull. Amer. Math. Soc. 39 (2002), 145-205
- MSC (2000): Primary 17-02, 17A35, 17C40, 17C90, 22E70
- DOI: https://doi.org/10.1090/S0273-0979-01-00934-X
- MathSciNet review: 1886087