Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

From deep holes to free planes
HTML articles powered by AMS MathViewer

by Chuanming Zong PDF
Bull. Amer. Math. Soc. 39 (2002), 533-555 Request permission

Abstract:

During the last decades, by applying techniques from Number Theory, Combinatorics and Measure Theory, remarkable progress has been made in the study of deep holes, free planes and related topics in packings of convex bodies, especially in lattice ball packings. Meanwhile, some fascinating new problems have been proposed. To stimulate further research in related areas, we will review the main results, some key techniques and some fundamental problems about deep holes, free cylinders and free planes in this paper.
References
  • Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
  • W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Math. Ann. 296 (1993), no. 4, 625–635. MR 1233487, DOI 10.1007/BF01445125
  • K. Böröczky, Closest packing and loosest covering of the space with balls, Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 79–89. MR 898846
  • K. Böröczky and V. Soltan, Translational and homothetic clouds for a convex body, Studia Sci. Math. Hungar. 32 (1996), no. 1-2, 93–102. MR 1405128
  • 5 K. Böröczky Jr. and G. Tardos, The longest segment in the complement of a packing, Mathematika, in press.
  • G. J. Butler, Simultaneous packing and covering in euclidean space, Proc. London Math. Soc. (3) 25 (1972), 721–735. MR 319054, DOI 10.1112/plms/s3-25.4.721
  • S. Norton, A bound for the covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1779, 259–260. MR 660414, DOI 10.1098/rspa.1982.0041
  • J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
  • H. S. M. Coxeter, L. Few, and C. A. Rogers, Covering space with equal spheres, Mathematika 6 (1959), 147–157. MR 124821, DOI 10.1112/S0025579300002059
  • G. Csóka, The number of congruent spheres that cover a given sphere of three-dimensional space is not less than $30$, Studia Sci. Math. Hungar. 12 (1977), no. 3-4, 323–334 (Russian). MR 607086
  • 11 L. Danzer, Drei Beispiele zu Lagerungsproblemen, Arch. Math. 11 (1960), 159–165.
  • B. N. Delone and S. S. Ryškov, Solution of the problem on the least dense lattice covering of a 4-dimensional space by equal spheres, Dokl. Akad. Nauk SSSR 152 (1963), 523–524 (Russian). MR 0175850
  • Gábor Fejes Tóth and Włodzimierz Kuperberg, Packing and covering with convex sets, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 799–860. MR 1242997
  • L. Fejes Tóth, Verdeckung einer Kugel durch Kugeln, Publ. Math. Debrecen 6 (1959), 234–240 (German). MR 113179
  • L. Fejes Tóth, Close packing and loose covering with balls, Publ. Math. Debrecen 23 (1976), no. 3-4, 323–326. MR 428199
  • P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
  • T. Hausel, Transillumination of lattice packing of balls, Studia Sci. Math. Hungar. 27 (1992), no. 1-2, 241–242. MR 1207577
  • 18 M. Henk, Finite and Infinite Packings, Habilitationsschrift, Universität Siegen, 1995. 19 M. Henk, Notes on covering minima and free planes, preprint. 20 M. Henk and C. Zong, Segments in ball packings, Mathematika, in press. 21 M. Henk, G. M. Ziegler and C. Zong, On free planes in lattice ball packings, Bull. London Math. Soc., in press.
  • A. Heppes, Ein Satz über gitterförmige Kugelpackungen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3(4) (1960/61), 89–90 (German). MR 133737
  • Aladár Heppes, On the number of spheres which can hide a given sphere, Canadian J. Math. 19 (1967), 413–418. MR 209980, DOI 10.4153/CJM-1967-033-4
  • I. Hortobágyi, Durchleuchtung gitterförmiger Kugelpackungen mit Lichtbündeln, Studia Sci. Math. Hungar. 6 (1971), 147–150 (German). MR 348634
  • J. Horváth, Über die Durchsichtigkeit gitterförmiger Kugelpackungen, Studia Sci. Math. Hungar. 5 (1970), 421–426 (German). MR 298563
  • 26 J. Horváth, On close lattice packing of unit spheres in the space $E^n$, Proc. Steklov Math. Inst. 152 (1982), 237–254. 27 J. Horváth, Several Problems of $n$-dimensional Discrete Geometry, Ph.D. Thesis, Steklov Math. Inst., Moskow, 1986.
  • Jenő Horváth, Eine Bemerkung zur Durchleuchtung von gitterförmigen Kugelpackungen, Proceedings of the 4th International Congress of Geometry (Thessaloniki, 1996) Giachoudis-Giapoulis, Thessaloniki, 1997, pp. 187–191 (German, with English summary). MR 1470975
  • 29 G. A. Kabatjanski and V. I. Levenstein, Bounds for packings on a sphere and in space, Problems Inform. Transmission 14 (1978), 1–17.
  • Ravi Kannan and László Lovász, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (1988), no. 3, 577–602. MR 970611, DOI 10.2307/1971436
  • 31 A. N. Korkin and E. I. Zolotarev, Sur les formes quadratiques positives quaternaires, Math. Ann. 5 (1872), 581–583. 32 A. N. Korkin and E. I. Zolotarev, Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242–292.
  • Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
  • John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
  • S. Norton, A bound for the covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1779, 259–260. MR 660414, DOI 10.1098/rspa.1982.0041
  • P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
  • 37 K. Reinhardt, Über die dichteste gitterförmige Lagerung kongruenter Bereiche in der Ebene und eine besondere Art konvexer Kurven, Abh. Math. Sem. Hamburg 10 (1934), 216–230.
  • C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
  • C. A. Rogers, The packing of equal spheres, Proc. London Math. Soc. (3) 8 (1958), 609–620. MR 102052, DOI 10.1112/plms/s3-8.4.609
  • C. A. Rogers, Lattice coverings of space, Mathematika 6 (1959), 33–39. MR 124820, DOI 10.1112/S002557930000190X
  • C. A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, No. 54, Cambridge University Press, New York, 1964. MR 0172183
  • S. S. Ryškov and E. P. Baranovskiĭ, Solution of the problem of the least dense lattice covering of five-dimensional space by equal spheres, Dokl. Akad. Nauk SSSR 222 (1975), no. 1, 39–42 (Russian). MR 0427238
  • S. S. Ryškov and E. G. Horvat, Estimation of the radius of a cylinder that can be imbedded in every lattice packing of $n$-dimensional unit balls, Mat. Zametki 17 (1975), 123–128 (Russian). MR 370373
  • Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
  • István Talata, On translational clouds for a convex body, Geom. Dedicata 80 (2000), no. 1-3, 319–329. MR 1762518, DOI 10.1023/A:1005279901749
  • R. T. Worley, The Voronoĭ region of $E^*_6$, J. Austral. Math. Soc. Ser. A 43 (1987), no. 2, 268–278. MR 896633, DOI 10.1017/S1446788700029402
  • R. T. Worley, The Voronoĭ region of $E^*_7$, SIAM J. Discrete Math. 1 (1988), no. 1, 134–141. MR 936615, DOI 10.1137/0401015
  • Chuanming Zong, Strange phenomena in convex and discrete geometry, Universitext, Springer-Verlag, New York, 1996. MR 1416567, DOI 10.1007/978-1-4613-8481-6
  • Chuanming Zong, A problem of blocking light rays, Geom. Dedicata 67 (1997), no. 2, 117–128. MR 1474113, DOI 10.1023/A:1004974630549
  • C. Zong, A note on Hornich’s problem, Arch. Math. (Basel) 72 (1999), no. 2, 127–131. MR 1667053, DOI 10.1007/s000130050313
  • Chuanming Zong, Sphere packings, Universitext, Springer-Verlag, New York, 1999. MR 1707318
  • 52 C. Zong, Simultaneous packing and covering in the Euclidean plane, Monatsh. Math. 134 (2002), 247–255. 53 C. Zong, Simultaneous packing and covering in three-dimensional Euclidean space, J. London Math. Soc., in press.
Similar Articles
Additional Information
  • Chuanming Zong
  • Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China
  • Email: cmzong@math.pku.edu.cn
  • Received by editor(s): May 31, 2001
  • Received by editor(s) in revised form: January 1, 2002
  • Published electronically: July 8, 2002
  • Additional Notes: This work is supported by the National Science Foundation of China and a special grant from Peking University

  • Dedicated: Dedicated to Eli Goodman and Ricky Pollack
  • © Copyright 2002 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 39 (2002), 533-555
  • MSC (2000): Primary 05B40, 11H31, 52C15, 52C17
  • DOI: https://doi.org/10.1090/S0273-0979-02-00950-3
  • MathSciNet review: 1920280