Spectra of hyperbolic surfaces
Author:
Peter Sarnak
Journal:
Bull. Amer. Math. Soc. 40 (2003), 441-478
MSC (2000):
Primary 11F03, 11N75, 11R42, 35P30
DOI:
https://doi.org/10.1090/S0273-0979-03-00991-1
Published electronically:
July 17, 2003
MathSciNet review:
1997348
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: These notes attempt to describe some aspects of the spectral theory of modular surfaces. They are by no means a complete survey.
- James Arthur, The trace formula and Hecke operators, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 11â27. MR 993309 [Ar]Ar E. Artin, Abh. Math. Sem., Hamburg (1924), 170-175.
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083â2091. MR 489542
- Lipman Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 349â361. MR 0124484
- E. Bogomolny and C. Schmit, Semiclassical computations of energy levels, Nonlinearity 6 (1993), no. 4, 523â547. MR 1231772 [Bo]Bo E. Bombieri, Lectures on the zeta function (Italy, 2002). [Boo]Boo A. Booker, âPoles of Artin $L$-functions and the strong Artin Conjecture,â preprint (2002).
- Armand Borel, Automorphic forms on ${\rm SL}_2({\bf R})$, Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. MR 1482800 [B-L]B-L J. Bourgain and E. Lindenstrauss, âEntropy of quantum limits,â Comm. Math. Phys. 233 (2003), no. 1, 153â171. [Br]Br R. Brauer, On Artinâs $L$-series with general group characters, Annals of Math., Vol. 48, 2 (1947), 502-551.
- Kevin Buzzard, Mark Dickinson, Nick Shepherd-Barron, and Richard Taylor, On icosahedral Artin representations, Duke Math. J. 109 (2001), no. 2, 283â318. MR 1845181, DOI https://doi.org/10.1215/S0012-7094-01-10922-8
- A. O. L. Atkin and B. J. Birch (eds.), Computers in number theory, Academic Press, London-New York, 1971. MR 0314733
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665 [Cl]Cl L. Clozel, âSpectral theory of automorphic formsâ, Lectures, Park City (2002). [Co-PS-S]Co-PS-S J. Cogdell, I. Piatetsky-Shapiro and P. Sarnak, âEstimates for Hilbert modular $L$-functions and applicationsâ (in preparation). [Cog]Cog J. Cogdell, âOn sums of 3 squaresâ (to appear), J. ThĂ©or. Nombres Bordeaux (2003).
- Y. Colin de VerdiĂšre, ErgodicitĂ© et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497â502 (French, with English summary). MR 818831
- Yves Colin de VerdiĂšre, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87â113 (French). MR 699488
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931 [De]De P. Deligne, Formes modulaires et represéntations $l$-adiques, Lecture Notes in Math., Vol. 179, Springer (1971), 139-172.
- J.-M. Deshouillers and H. Iwaniec, The nonvanishing of Rankin-Selberg zeta-functions at special points, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 51â95. MR 853553, DOI https://doi.org/10.1090/conm/053/853553
- W. Duke, J. B. Friedlander, and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (1995), no. 2, 423â441. MR 1324141, DOI https://doi.org/10.2307/2118527
- W. Duke and H. Iwaniec, Estimates for coefficients of $L$-functions. IV, Amer. J. Math. 116 (1994), no. 1, 207â217. MR 1262431, DOI https://doi.org/10.2307/2374986
- William Duke and Rainer Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99 (1990), no. 1, 49â57. MR 1029390, DOI https://doi.org/10.1007/BF01234411
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39â79. MR 405514, DOI https://doi.org/10.1007/BF01405172 [E-F-K-A-M-M]E-F-K-A-M-M B. Eckhardt, S. Fishman, J. Keating, O. Agam, J. Main, K. Muller, Approach to ergodicity in quantum wave functions, Phys. Rev. E, Vol. 52, No. 6 (1995), 5893-5903.
- Ju. V. Egorov, The canonical transformations of pseudodifferential operators, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 235â236 (Russian). MR 0265748 [E-K]E-K M. Einsiedler and A. Katok, âInvariant measures on $G/\Gamma$ for split simple Lie groups $G$â, Comm. Pure Appl. Math., Vol. LVI, no. 8 (2003), 1184-1221.
- Mario Feingold and Asher Peres, Distribution of matrix elements of chaotic systems, Phys. Rev. A (3) 34 (1986), no. 1, 591â595. MR 848319, DOI https://doi.org/10.1103/PhysRevA.34.591
- John B. Friedlander, Bounds for $L$-functions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (ZĂŒrich, 1994) BirkhĂ€user, Basel, 1995, pp. 363â373. MR 1403937
- Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209â235. MR 881269, DOI https://doi.org/10.2307/1971310
- Stephen S. Gelbart, Automorphic forms on adĂšle groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. Annals of Mathematics Studies, No. 83. MR 0379375
- Stephen Gelbart and HervĂ© Jacquet, A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$, Ann. Sci. Ăcole Norm. Sup. (4) 11 (1978), no. 4, 471â542. MR 533066
- Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495 [G-S]G-S V. Golovshanski and N. Smotrov, preprint, Inst. App. Math. Khabarovsk (1982).
- Gergely Harcos, Uniform approximate functional equation for principal $L$-functions, Int. Math. Res. Not. 18 (2002), 923â932. MR 1902296, DOI https://doi.org/10.1155/S1073792802111184
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605â672. MR 1109355, DOI https://doi.org/10.2307/2944321 [Ha]Ha H. Hasse, J. reine angew Math. 153 (1924) 113-130. [Hec1]Hec1 E. Hecke, Math. Zeit, Vol. 1 (1918), 357-376. [Hec2]Hec2 E. Hecke, Math. Ann., Vol. 114 (1937), 1-28.
- Dennis A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. Amer. Math. Soc. 97 (1992), no. 469, vi+165. MR 1106989, DOI https://doi.org/10.1090/memo/0469
- Dennis A. Hejhal, The Selberg trace formula for ${\rm PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755
- Dennis A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 291â315. MR 1691537, DOI https://doi.org/10.1007/978-1-4612-1544-8_11
- Dennis A. Hejhal and Barry N. Rackner, On the topography of Maass waveforms for ${\rm PSL}(2,{\bf Z})$, Experiment. Math. 1 (1992), no. 4, 275â305. MR 1257286
- Eric J. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett. 53 (1984), no. 16, 1515â1518. MR 762412, DOI https://doi.org/10.1103/PhysRevLett.53.1515
- M. N. Huxley, Introduction to Kloostermania, Elementary and analytic theory of numbers (Warsaw, 1982) Banach Center Publ., vol. 17, PWN, Warsaw, 1985, pp. 217â306. MR 840479
- Henryk Iwaniec, The spectral growth of automorphic $L$-functions, J. Reine Angew. Math. 428 (1992), 139â159. MR 1166510, DOI https://doi.org/10.1515/crll.1992.428.139
- Henryk Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista MatemĂĄtica Iberoamericana. [Library of the Revista MatemĂĄtica Iberoamericana], Revista MatemĂĄtica Iberoamericana, Madrid, 1995. MR 1325466
- H. Iwaniec and P. Sarnak, $L^\infty $ norms of eigenfunctions of arithmetic surfaces, Ann. of Math. (2) 141 (1995), no. 2, 301â320. MR 1324136, DOI https://doi.org/10.2307/2118522
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705â741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI https://doi.org/10.1007/978-3-0346-0425-3_6
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499â558. MR 618323, DOI https://doi.org/10.2307/2374103
- Dmitry Jakobson, Quantum unique ergodicity for Eisenstein series on ${\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})$, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 5, 1477â1504 (English, with English and French summaries). MR 1313792
- Christopher M. Judge, On the existence of Maass cusp forms on hyperbolic surfaces with cone points, J. Amer. Math. Soc. 8 (1995), no. 3, 715â759. MR 1273415, DOI https://doi.org/10.1090/S0894-0347-1995-1273415-6
- A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751â778. MR 1406432, DOI https://doi.org/10.1017/S0143385700009081
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1â26. MR 1640151, DOI https://doi.org/10.1090/S0273-0979-99-00766-1
- J. P. Keating and N. C. Snaith, Random matrix theory and $L$-functions at $s=1/2$, Comm. Math. Phys. 214 (2000), no. 1, 91â110. MR 1794267, DOI https://doi.org/10.1007/s002200000262 [K]K H. Kim, âFunctoriality of the exterior square of $GL_4$ and the symmetric fourth power of $GL_2$â, JAMS, Vol. 16, 1 (2003), 139-183. [Ki-Sa]Ki-Sa H. Kim and P. Sarnak, Appendix to [K], JAMS 16 (2003), no. 1, 139â183 (electronic). [K-S1]K-S1 H. Kim and F. Shahidi, Functorial products for $\textrm {GL}_ 2\times \textrm {GL}_ 3$ and the symmetric cube for $\textrm {GL}_ 2$, Annals of Math. 155 (2002), 837-893.
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177â197. MR 1890650, DOI https://doi.org/10.1215/S0012-9074-02-11215-0 [Kl]Kl F. Klein, âLectures on the Icosahedronâ, Paul French FrĂŒbner Co. (1913). [Kne]Kne M. Kneser, âQuadratische formenâ, Lecture Notes, Göttingen (1974).
- N. V. Kuznecov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334â383, 479 (Russian). MR 568983
- Serge Lang, ${\rm SL}_{2}({\bf R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Robert P. Langlands, Base change for ${\rm GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 18â61. Lecture Notes in Math., Vol. 170. MR 0302614
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181
- R. P. Langlands, Eisenstein series, the trace formula, and the modern theory of automorphic forms, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 125â155. MR 993313 [L-R]L-R E. Lapid and S. Rallis, Annals of Math. 157 (2003), 1-26.
- Peter D. Lax, The Radon transform and translation representation, J. Evol. Equ. 1 (2001), no. 3, 311â323. Dedicated to Ralph S. Phillips. MR 1861225, DOI https://doi.org/10.1007/PL00001373
- Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Princeton Univ. Press, Princeton, N.J., 1976. Annals of Mathematics Studies, No. 87. MR 0562288
- Vladimir F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 24, Springer-Verlag, Berlin, 1993. With an addendum by A. I. ShnirelâČman. MR 1239173 [Li1]Li1 E. Lindenstrauss, âInvariant measures and arithmetic quantum unique ergodicity", preprint (2003).
- Elon Lindenstrauss, On quantum unique ergodicity for $\Gamma \backslash \Bbb H\times \Bbb H$, Internat. Math. Res. Notices 17 (2001), 913â933. MR 1859345, DOI https://doi.org/10.1155/S1073792801000459
- A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261â277. MR 963118, DOI https://doi.org/10.1007/BF02126799
- Wenzhi Luo, Nonvanishing of $L$-values and the Weyl law, Ann. of Math. (2) 154 (2001), no. 2, 477â502. MR 1865978, DOI https://doi.org/10.2307/3062104
- W. Luo, Z. Rudnick, and P. Sarnak, On Selbergâs eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387â401. MR 1334872, DOI https://doi.org/10.1007/BF01895672
- Wen Zhi Luo and Peter Sarnak, Quantum ergodicity of eigenfunctions on ${\rm PSL}_2(\mathbf Z)\backslash \mathbf H^2$, Inst. Hautes Ătudes Sci. Publ. Math. 81 (1995), 207â237. MR 1361757 [L-S2]L-S2 W. Luo and P. Sarnak, âQuantum ergodicity of eigenfunctions on $SL_2 ( \mathbb {Z} ) \backslash \mathbb {H} \; \textrm {II}$â (in preparation). [Mas]Mas H. Maass, Math. Ann. 121 (1949), 141-183.
- G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), no. 1, 51â60 (Russian); English transl., Problems Inform. Transmission 24 (1988), no. 1, 39â46. MR 939574
- H. P. McKean, An upper bound to the spectrum of $\Delta $ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359â366. MR 266100
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43â69. MR 217739
- Madan Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR 1083764
- Stephen D. Miller, On the existence and temperedness of cusp forms for ${\rm SL}_3({\Bbb Z})$, J. Reine Angew. Math. 533 (2001), 127â169. MR 1823867, DOI https://doi.org/10.1515/crll.2001.029 [M-S]M-S S.D. Miller and W. Schmid, âAutomorphic Distributions, $L$-functions and Voronoi Summation for $GL(3)$â (2002), preprint. [Mu]Mu W. MĂŒller (2002) (in preparation).
- Yiannis N. Petridis, Spectral data for finite volume hyperbolic surfaces at the bottom of the continuous spectrum, J. Funct. Anal. 124 (1994), no. 1, 61â94. MR 1284603, DOI https://doi.org/10.1006/jfan.1994.1098
- R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of ${\rm PSL}(2,{\bf R})$, Invent. Math. 80 (1985), no. 2, 339â364. MR 788414, DOI https://doi.org/10.1007/BF01388610
- R. S. Phillips and P. Sarnak, The Weyl theorem and the deformation of discrete groups, Comm. Pure Appl. Math. 38 (1985), no. 6, 853â866. MR 812352, DOI https://doi.org/10.1002/cpa.3160380614
- R. Phillips and P. Sarnak, Perturbation theory for the Laplacian on automorphic functions, J. Amer. Math. Soc. 5 (1992), no. 1, 1â32. MR 1127079, DOI https://doi.org/10.1090/S0894-0347-1992-1127079-X
- I. Piatetski-Shapiro and Stephen Rallis, Rankin triple $L$ functions, Compositio Math. 64 (1987), no. 1, 31â115. MR 911357
- M. Ratner, The central limit theorem for geodesic flows on $n$-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181â197. MR 333121, DOI https://doi.org/10.1007/BF02757869
- ZeĂ©v Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195â213. MR 1266075
- Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395â406. MR 1062766, DOI https://doi.org/10.1017/S0143385700005629 [Sa1]Sa1 P. Sarnak, âA panorama of number theoryâ, ed. Wustholz, Cambridge (2002), 121-127.
- Peter Sarnak, On cusp forms, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393â407. MR 853570, DOI https://doi.org/10.1090/conm/053/853570 [Sa3]Sa3 P. Sarnak, Letter to Z. Rudnick, August, 2002.
- Peter Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183â236. MR 1321639
- Peter Sarnak, Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), no. 2, 419â453. MR 1851004, DOI https://doi.org/10.1006/jfan.2001.3783 [Sa-Wa]Sa-Wa P. Sarnak and T. Watson, â$L^4$ norms of eigenfunctions on the modular surface" (in preparation).
- Rainer Schulze-Pillot, Exceptional integers for genera of integral ternary positive definite quadratic forms, Duke Math. J. 102 (2000), no. 2, 351â357. MR 1749442, DOI https://doi.org/10.1215/S0012-7094-00-10227-X [Sel3]Sel3 A. Selberg, Collected Works, Springer (1988), 341-355.
- Atle Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan. MR 1117906
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1â15. MR 0182610
- J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 193â268. MR 0450201
- F. Shahidi, Automorphic $L$-functions: a survey, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 415â437. MR 1044824
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. KanĂŽ Memorial Lectures, No. 1. MR 0314766
- Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79â98. MR 382176, DOI https://doi.org/10.1112/plms/s3-31.1.79 [Shn]Shn A. Shnirelman, Uspekhi Mat. Nauk 29/6 (1974), 181-182.
- Barry Simon, Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), 247â274. MR 353896, DOI https://doi.org/10.2307/1970847
- Christopher D. Sogge, Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), no. 1, 123â138. MR 930395, DOI https://doi.org/10.1016/0022-1236%2888%2990081-X [Sp]Sp F. Spinu, Thesis, Princeton University (2003).
- Robert A. Rankin (ed.), Modular forms, Ellis Horwood Series in Mathematics and its Applications: Statistics and Operational Research, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984. Papers from the symposium held at the University of Durham, Durham, June 30âJuly 10, 1983. MR 803359 [St]St G. Steil, Diplom. Math. Univ. Hamburg (1992).
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307â355. MR 864375 [Str]Str A. Strombergsson, private communication (2003).
- Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600â612. MR 398991, DOI https://doi.org/10.2969/jmsj/02740600
- ĂrpĂĄd TĂłth, Roots of quadratic congruences, Internat. Math. Res. Notices 14 (2000), 719â739. MR 1776618, DOI https://doi.org/10.1155/S1073792800000404
- Jerrold Tunnell, Artinâs conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173â175. MR 621884, DOI https://doi.org/10.1090/S0273-0979-1981-14936-3
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585 [Wa]Wa T. Watson, Thesis, Princeton University (2002). [Wei]Wei A. Weil, Automorphic forms and Dirichlet series, Springer Lect. Notes, Vol. 189 (1971).
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487â539. MR 1094467
- Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67â89, 91â129. MR 1156387, DOI https://doi.org/10.1007/BF02100600
- Scott A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. (2) 139 (1994), no. 2, 239â291. MR 1274093, DOI https://doi.org/10.2307/2946582
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919â941. MR 916129, DOI https://doi.org/10.1215/S0012-7094-87-05546-3
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11F03, 11N75, 11R42, 35P30
Retrieve articles in all journals with MSC (2000): 11F03, 11N75, 11R42, 35P30
Additional Information
Peter Sarnak
Affiliation:
Courant Institute of Math. Sciences; and Department of Mathematics, Princeton University, Princeton, NJ 05840
MR Author ID:
154725
Email:
sarnak@Math.Princeton.EDU
Received by editor(s):
March 6, 2003
Published electronically:
July 17, 2003
Additional Notes:
This paper is based on notes for the Colloquium Lecture presented at the Joint Mathematics Meetings in Baltimore in January 2003
Article copyright:
© Copyright 2003
American Mathematical Society