Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Continued fractions and modular functions
HTML articles powered by AMS MathViewer

by W. Duke PDF
Bull. Amer. Math. Soc. 42 (2005), 137-162 Request permission
References
  • George E. Andrews, An introduction to Ramanujan’s “lost” notebook, Amer. Math. Monthly 86 (1979), no. 2, 89–108. MR 520571, DOI 10.2307/2321943
  • George E. Andrews, Ramanujan’s “lost” notebook. I. Partial $\theta$-functions, Adv. in Math. 41 (1981), no. 2, 137–172. MR 625891, DOI 10.1016/0001-8708(81)90013-X
  • Emil Artin, Galois theory, 2nd ed., Dover Publications, Inc., Mineola, NY, 1998. Edited and with a supplemental chapter by Arthur N. Milgram. MR 1616156
  • Richard Askey, Orthogonal polynomials and theta functions, Theta functions—Bowdoin 1987, Part 2 (Brunswick, ME, 1987) Proc. Sympos. Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 299–321. MR 1013179
  • S. Barnard and J. M. Child, Advanced Algebra, Macmillan & Co., Ltd., London, 1939. MR 0001185
  • Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125, DOI 10.1007/978-1-4612-1088-7
  • Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reine Angew. Math. 480 (1996), 141–159. MR 1420561, DOI 10.1515/crll.1996.480.141
  • [Ber]Berw W. E. H. Berwick, Modular invariants expressible in terms of quadratic and cubic irrationalities. Proc. London Math. Soc. (2) 28, 53-69 (1928).
  • B. J. Birch, Weber’s class invariants, Mathematika 16 (1969), 283–294. MR 262206, DOI 10.1112/S0025579300008251
  • Richard E. Borcherds, What is Moonshine?, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 607–615. MR 1660657
  • A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, and J.-P. Serre, Seminar on complex multiplication, Lecture Notes in Mathematics, No. 21, Springer-Verlag, Berlin-New York, 1966. Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58. MR 0201394
  • [Bra]Br R. Brauer, Galois Theory, 1957-1958, Harvard Lecture Notes.
  • David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
  • [Dar]Da H. B. C. Darling, Proofs of certain identities and congruences enunciated by S. Ramanujan. Proc. Lond. M. S. (2) 19, 350-372 (1921).
  • M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band I 2, Heft 10, Teil II (Article I 2, vol. 23, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1958 (German). MR 0167481
  • [Dic]Di L. E. Dickson, Modern algebraic theories. Sanborn, New York, 1926. [Eis]Ei G. Eisenstein, Theorema. J. für die reine und angew. Math. 29, 96-97 (1845) [ #26 in Mathematische Werke. Band I. 289–290, Chelsea Publishing Co., New York, 1975].
  • Noam D. Elkies, The Klein quartic in number theory, The eightfold way, Math. Sci. Res. Inst. Publ., vol. 35, Cambridge Univ. Press, Cambridge, 1999, pp. 51–101. MR 1722413
  • Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, Graduate Studies in Mathematics, vol. 37, American Mathematical Society, Providence, RI, 2001. An introduction with applications to uniformization theorems, partition identities and combinatorial number theory. MR 1850752, DOI 10.1090/gsm/037
  • [Fol]Fo A. Folsom, Modular forms and Eisenstein’s continued fractions. Preprint, 2004. [Fri]Fr R. Fricke, Lehrbuch der Algebra, Band 2, Vieweg, Braunschweig, 1926.
  • H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154–190 (German). MR 211973, DOI 10.1515/crll.1967.225.154
  • Basil Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741–748. MR 184001
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work. , Chelsea Publishing Co., New York, 1959. MR 0106147
  • [Hei]He E. Heine, Verwandlung von Reihen in Kettenbrüche. J. für die reine und angew. Math. 32, 205–209 (1846).
  • Michael D. Hirschhorn, On the expansion of Ramanujan’s continued fraction, Ramanujan J. 2 (1998), no. 4, 521–527. MR 1665326, DOI 10.1023/A:1009789012006
  • [Jac]Ja C. G. J. Jacobi, Allgemeine Theorie der kettenbruchaehnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird, J. für die reine und angew. Math. 69, 29–64 (1869) [in Mathematische Werke, VI, pp. 385–426, Chelsea, New York, 1969]. [Kl1]Kl0 F. Klein, Weitere Untersuchungen über das Ikosaeder. Math. Ann. 12, 509-561 (1877) [in Gesammelte Math. Abhandlungen II , 321–384, Springer, 1922]. [Kl2]Kl1 F. Klein, Über die Transformation der elliptischen Functionen und die Auflösung der Gleichungen fünften Grades. Math. Ann. 14, 111-172 (1878) [in Gesammelte Math. Abhandlungen III, 13–75, Springer, 1922]. [Kl3]Kl2 F. Klein, Über die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. 14, 428–471 (1879) [in Gesammelte Math. Abhandlungen III, 90–136, Springer, 1922].
  • Felix Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, Second and revised edition, Dover Publications, Inc., New York, N.Y., 1956. Translated into English by George Gavin Morrice. MR 0080930
  • Marvin I. Knopp, Modular functions in analytic number theory, Markham Publishing Co., Chicago, Ill., 1970. MR 0265287
  • Wilhelm Magnus, Vignette of a cultural episode, Studies in numerical analysis (papers in honour of Cornelius Lanczos on the occasion of his 80th birthday), Academic Press, London, 1974, pp. 7–13. MR 0347521
  • Henry McKean and Victor Moll, Elliptic curves, Cambridge University Press, Cambridge, 1997. Function theory, geometry, arithmetic. MR 1471703, DOI 10.1017/CBO9781139174879
  • [Mu1]Mu0 T. Muir, New general formula for the transformation of infinite series into continued fractions. Transactions of the Royal Society of Edinburgh, 27 (1876), 467-471. [Mu2]Mu T. Muir, On Eisenstein’s continued fractions, Transactions of the Royal Society of Edinburgh, 28 (1876–1878), 135–144.
  • Morris Newman, Classification of normal subgroups of the modular group, Trans. Amer. Math. Soc. 126 (1967), 267–277. MR 204375, DOI 10.1090/S0002-9947-1967-0204375-3
  • A. P. Ogg, Rational points of finite order on elliptic curves, Invent. Math. 12 (1971), 105–111. MR 291084, DOI 10.1007/BF01404654
  • Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384
  • K. G. Ramanathan, On Ramanujan’s continued fraction, Acta Arith. 43 (1984), no. 3, 209–226. MR 738134, DOI 10.4064/aa-43-3-209-226
  • K. G. Ramanathan, On some theorems stated by Ramanujan, Number theory and related topics (Bombay, 1988) Tata Inst. Fund. Res. Stud. Math., vol. 12, Tata Inst. Fund. Res., Bombay, 1989, pp. 151–160. MR 1441329
  • [Ram1]Ra1 S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
  • Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
  • Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
  • [Ro1]Ro L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318–343. [Ro2]Ro2 L. J. Rogers, On a type of modular relation, Proc. London Math. Soc. (2) 19, 387–397 (1921). [S]Schn Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113, 1–13 (1937).
  • Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 0412107
  • [Sch]Sc I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, Berl. Ber., 302-321 (1917) [#28 in Gesammelte Abhandlungen, Band II, 117–136, Springer-Verlag, 1973]. [Se1]Se1 A. Selberg, Über einige arithmetische Identitäten. Avh. Norske Vidensk.- Akad. Oslo I, 1936, Nr. 8, 23 S. (1936) [#1 in Collected papers, Vol. I. With a foreword by K. Chandrasekharan. Springer-Verlag, Berlin, 1989].
  • Atle Selberg, Reflections around the Ramanujan centenary [ MR1001304 (90g:01055)], Ramanujan: essays and surveys, Hist. Math., vol. 22, Amer. Math. Soc., Providence, RI, 2001, pp. 203–213. MR 1862753, DOI 10.1090/hmath/022/24
  • Jean-Pierre Serre, Extensions icosaédriques, Seminar on Number Theory, 1979–1980 (French), Univ. Bordeaux I, Talence, 1980, pp. Exp. No. 19, 7 (French). MR 604216
  • Jean-Pierre Serre, L’invariant de Witt de la forme $\textrm {Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651–676 (French). MR 780081, DOI 10.1007/BF02566371
  • Jean-Pierre Serre, Cohomological invariants, Witt invariants, and trace forms, Cohomological invariants in Galois cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, 2003, pp. 1–100. Notes by Skip Garibaldi. MR 1999384
  • Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394
  • Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
  • H. M. Stark, On complex quadratic fields wth class-number two, Math. Comp. 29 (1975), 289–302. MR 369313, DOI 10.1090/S0025-5718-1975-0369313-X
  • [Syl]Sy J. J. Sylvester, On a remarkable modification of Sturm’s theorem. Philosophical Magazine 4, 446–457 (1853) [#61 in Collected Math. Papers, Vol. I, 609–619, Chelsea, New York, 1973].
  • Gabor Toth, Finite Möbius groups, minimal immersions of spheres, and moduli, Universitext, Springer-Verlag, New York, 2002. MR 1863996, DOI 10.1007/978-1-4613-0061-8
  • [Wa1]Wa1 G. N. Watson, Theorems stated by Ramanujan (VII): Theorems on continued fractions, J. London Math. Soc. 4 (1929), 39–48. [Wa2]Wa2 G. N. Watson, Theorems stated by Ramanujan (IX): Two continued fractions, J. London Math. Soc. 4 (1929), 231–237. [Web]We H. Weber, Lehrbuch der Algebra, III. Braunschweig, 1908 [reprinted by Chelsea, New York, 1961].
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11Fxx, 11Gxx
  • Retrieve articles in all journals with MSC (2000): 11Fxx, 11Gxx
Additional Information
  • W. Duke
  • Affiliation: Department of Mathematics, University of California, Box 951555, Los Angeles, California 90095-1555
  • Email: wdduke@ucla.edu
  • Received by editor(s): November 4, 2003
  • Published electronically: January 25, 2005
  • Additional Notes: Research supported in part by NSF Grant DMS-0355564.
  • © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Bull. Amer. Math. Soc. 42 (2005), 137-162
  • MSC (2000): Primary 11Fxx, 11Gxx
  • DOI: https://doi.org/10.1090/S0273-0979-05-01047-5
  • MathSciNet review: 2133308