Symbolic dynamics for the modular surface and beyond
Authors:
Svetlana Katok and Ilie Ugarcovici
Journal:
Bull. Amer. Math. Soc. 44 (2007), 87-132
MSC (2000):
Primary 37D40, 37B40, 20H05
DOI:
https://doi.org/10.1090/S0273-0979-06-01115-3
Published electronically:
October 2, 2006
MathSciNet review:
2265011
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this expository article we describe the two main methods of representing geodesics on surfaces of constant negative curvature by symbolic sequences and their development. A geometric method stems from a 1898 work of J. Hadamard and was developed by M. Morse in the 1920s. It consists of recording the successive sides of a given fundamental region cut by the geodesic and may be applied to all finitely generated Fuchsian groups. Another method, of arithmetic nature, uses continued fraction expansions of the end points of the geodesic at infinity and is even older—it comes from the Gauss reduction theory. Introduced to dynamics by E. Artin in a 1924 paper, this method was used to exhibit dense geodesics on the modular surface. For 80 years these classical works have provided inspiration for mathematicians and a testing ground for new methods in dynamics, geometry and combinatorial group theory. We present some of the ideas, results (old and recent), and interpretations that illustrate the multiple facets of the subject.
- L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875 (Russian). MR 0113985
- Roy L. Adler, Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 1, 1–56. MR 1477538, DOI https://doi.org/10.1090/S0273-0979-98-00737-X
- Roy L. Adler and Leopold Flatto, Cross section maps for geodesic flows. I. The modular surface, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 103–161. MR 670077
- Roy L. Adler and Leopold Flatto, Cross section map for the geodesic flow on the modular surface, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 9–24. MR 737384, DOI https://doi.org/10.1090/conm/026/737384
- Roy L. Adler and Leopold Flatto, The backward continued fraction map and geodesic flow, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 487–492. MR 779707, DOI https://doi.org/10.1017/S0143385700002583
- Roy Adler and Leopold Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 229–334. MR 1085823, DOI https://doi.org/10.1090/S0273-0979-1991-16076-3
- R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573–1576. MR 212156, DOI https://doi.org/10.1073/pnas.57.6.1573
- Pierre Arnoux, Le codage du flot géodésique sur la surface modulaire, Enseign. Math. (2) 40 (1994), no. 1-2, 29–48 (French, with English and French summaries). MR 1279059 [Ar]Artin E. Artin, Ein Mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg 3 (1924), 170–175.
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
- Joan S. Birman and Caroline Series, Dehn’s algorithm revisited, with applications to simple curves on surfaces, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 451–478. MR 895628 [Bh]BirkhoffPont G. D. Birkhoff, Nouvelles recherches sur les systèmes dynamique, Memoriae Pont. Acad. Sci. Novi Lyncaei, s. 3, Vol. 1, 1935, pp. 85–216 (according to the collected works).
- Rufus Bowen, The equidistribution of closed geodesics, Amer. J. Math. 94 (1972), 413–423. MR 315742, DOI https://doi.org/10.2307/2374628
- Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170. MR 556585 [D]Dirichlet P. G. L. Dirichlet, Vereinfachung der Theorie der binaren quadratischen Formen von positiver Determinante, Abh. K. Akad. Wiss. Berlin Math. (1854), 99–115. [Fo1]Fo L. Ford, A geometric proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35 (1917), 59–65. [Fo2]Fo1 L. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), no. 1, 1–42.
- L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), no. 9, 586–601. MR 1524411, DOI https://doi.org/10.2307/2302799
- David Fried, Symbolic dynamics for triangle groups, Invent. Math. 125 (1996), no. 3, 487–521. MR 1400315, DOI https://doi.org/10.1007/s002220050084
- David Fried, Reduction theory over quadratic imaginary fields, J. Number Theory 110 (2005), no. 1, 44–74. MR 2114673, DOI https://doi.org/10.1016/j.jnt.2004.08.001
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656
- David J. Grabiner and Jeffrey C. Lagarias, Cutting sequences for geodesic flow on the modular surface and continued fractions, Monatsh. Math. 133 (2001), no. 4, 295–339. MR 1915877, DOI https://doi.org/10.1007/PL00010093
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- Boris Gurevich and Svetlana Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J. 1 (2001), no. 4, 569–582, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901076, DOI https://doi.org/10.17323/1609-4514-2001-1-4-569-582 [Ha]Hadamard J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl. (5) 4 (1898), 27–73.
- Gustav A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2) 35 (1934), no. 4, 787–808. MR 1503197, DOI https://doi.org/10.2307/1968495
- Gustav A. Hedlund, A Metrically Transitive Group Defined by the Modular Groups, Amer. J. Math. 57 (1935), no. 3, 668–678. MR 1507102, DOI https://doi.org/10.2307/2371195 [He3]HedlundSurvey G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241–260.
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Heinz Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1–26 (German). MR 109212, DOI https://doi.org/10.1007/BF01369663 [Hum]Humbert M. G. Humbert, Sur les fractions continues et les formes quadratiques binaires indéfinies, C. R. Acad. Sci. Paris 162 (1916), 23–26. [H1]Hurwitz1 A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeler Grossen, Acta Math. 12 (1889) 367–405. [H2]Hurwitz2 A. Hurwitz, Über die angenaherte Darstellungen der Irrationalzahlen durch rationale Brüche, Math. Ann. 39 (1891) 279–284. [H3]Hurwitz3 A. Hurwitz, Über die Reduktion der binaren quadratischen Formen, Math. Ann. 45 (1894), 85–117.
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
- Svetlana Katok, Reduction theory for Fuchsian groups, Math. Ann. 273 (1986), no. 3, 461–470. MR 824433, DOI https://doi.org/10.1007/BF01450733
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
- Svetlana Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata 63 (1996), no. 2, 123–145. MR 1413625, DOI https://doi.org/10.1007/BF00148213
- Svetlana Katok and Ilie Ugarcovici, Geometrically Markov geodesics on the modular surface, Mosc. Math. J. 5 (2005), no. 1, 135–155 (English, with English and Russian summaries). MR 2153471, DOI https://doi.org/10.17323/1609-4514-2005-5-1-135-155
- Boris Gurevich and Svetlana Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J. 1 (2001), no. 4, 569–582, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901076, DOI https://doi.org/10.17323/1609-4514-2001-1-4-569-582 [Ko]Koebe P. Koebe, Riemannsche Mannigfaltigkeiten und nicht euklidische Raumformen, Sitzungsberichte der Preußischen Akademie der Wissenschaften, I (1927), 164–196; II, III (1928), 345–442; IV (1929), 414–557; V, VI (1930), 304–364, 504–541; VII (1931), 506–534.
- Cornelis Kraaikamp and Artur Lopes, The theta group and the continued fraction expansion with even partial quotients, Geom. Dedicata 59 (1996), no. 3, 293–333. MR 1371228, DOI https://doi.org/10.1007/BF00181695 [Le]Le P. Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard, Compositio Math. 3 (1936), 286–303. [Ma]Markoff A. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381–406.
- Dieter H. Mayer, On a $\zeta $ function related to the continued fraction transformation, Bull. Soc. Math. France 104 (1976), no. 2, 195–203. MR 418168
- Dieter H. Mayer, The thermodynamic formalism approach to Selberg’s zeta function for ${\rm PSL}(2,{\bf Z})$, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 55–60. MR 1080004, DOI https://doi.org/10.1090/S0273-0979-1991-16023-4
- Hermann Minkowski, Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York-London, 1968 (German). MR 0249269 [M1]Morse M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 33–51. [M2]Morse2 M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–100.
- R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 69–83. MR 684245, DOI https://doi.org/10.1017/s0143385700009585 [N]Nielsen J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), 189–358.
- Donald S. Ornstein, The isomorphism theorem for Bernoulli flows, Advances in Math. 10 (1973), 124–142. MR 318452, DOI https://doi.org/10.1016/0001-8708%2873%2990101-1
- Donald S. Ornstein and Benjamin Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184–198. MR 325926, DOI https://doi.org/10.1007/BF02762673
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Mark Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France 114 (1986), no. 4, 431–446. MR 882589
- A. B. Polyakov, On a measure with maximal entropy for a special flow over a local perturbation of a countable topological Bernoulli scheme, Mat. Sb. 192 (2001), no. 7, 73–96 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 7-8, 1001–1024. MR 1861374, DOI https://doi.org/10.1070/SM2001v192n07ABEH000580
- M. E. Ratner, Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki 6 (1969), 693–704 (Russian). MR 260977
- David Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954), 549–563. MR 65632
- David Rosen and Thomas A. Schmidt, Hecke groups and continued fractions, Bull. Austral. Math. Soc. 46 (1992), no. 3, 459–474. MR 1190349, DOI https://doi.org/10.1017/S0004972700012120 [Sa]Sa P. Sarnak, Prime geodesic theorems, PhD thesis, Stanford, 1980.
- S. V. Savchenko, Special flows constructed from countable topological Markov chains, Funktsional. Anal. i Prilozhen. 32 (1998), no. 1, 40–53, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 1, 32–41. MR 1627271, DOI https://doi.org/10.1007/BF02465754
- Thomas A. Schmidt and Mark Sheingorn, Length spectra of the Hecke triangle groups, Math. Z. 220 (1995), no. 3, 369–397. MR 1362251, DOI https://doi.org/10.1007/BF02572621
- Caroline Series, On coding geodesics with continued fractions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) Monograph. Enseign. Math., vol. 29, Univ. Genève, Geneva, 1981, pp. 67–76. MR 609896
- Caroline Series, Symbolic dynamics for geodesic flows, Acta Math. 146 (1981), no. 1-2, 103–128. MR 594628, DOI https://doi.org/10.1007/BF02392459
- Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI https://doi.org/10.1112/jlms/s2-31.1.69
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI https://doi.org/10.1017/S0143385700003722 [Sm]Smith H. J. S. Smith, Mémoire sur les Équations Modulaires, Atti R. Accad. Lincei, Mem. fis. mat. (3), 1 (1877), 136–149; English transl. Coll. Math. Papers, II, 224–241.
- John Stillwell, Geometry of surfaces, Universitext, Springer-Verlag, New York, 1992. MR 1171453
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441–530. MR 866707, DOI https://doi.org/10.2307/2007091
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer-Verlag, Berlin-New York, 1981 (German). Eine Einführung in die höhere Zahlentheorie. [An introduction to higher number theory]; Hochschultext. [University Text]. MR 631688
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 37D40, 37B40, 20H05
Retrieve articles in all journals with MSC (2000): 37D40, 37B40, 20H05
Additional Information
Svetlana Katok
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
MR Author ID:
99110
Email:
katok_s@math.psu.edu
Ilie Ugarcovici
Affiliation:
Department of Mathematics, Rice University, Houston, Texas 77005
Address at time of publication:
Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614
Email:
idu@rice.edu, iugarcov@depaul.edu
Keywords:
Modular surface,
geodesic flow,
continued fractions,
Markov partition
Received by editor(s):
February 27, 2005
Received by editor(s) in revised form:
January 24, 2006
Published electronically:
October 2, 2006
Additional Notes:
This paper is based on the AWM Emmy Noether Lecture given by the first author at the Joint Mathematics Meetings in January 2004 in Phoenix, AZ
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.