Symbolic dynamics for the modular surface and beyond
HTML articles powered by AMS MathViewer
- by Svetlana Katok and Ilie Ugarcovici PDF
- Bull. Amer. Math. Soc. 44 (2007), 87-132 Request permission
Abstract:
In this expository article we describe the two main methods of representing geodesics on surfaces of constant negative curvature by symbolic sequences and their development. A geometric method stems from a 1898 work of J. Hadamard and was developed by M. Morse in the 1920s. It consists of recording the successive sides of a given fundamental region cut by the geodesic and may be applied to all finitely generated Fuchsian groups. Another method, of arithmetic nature, uses continued fraction expansions of the end points of the geodesic at infinity and is even older—it comes from the Gauss reduction theory. Introduced to dynamics by E. Artin in a 1924 paper, this method was used to exhibit dense geodesics on the modular surface. For 80 years these classical works have provided inspiration for mathematicians and a testing ground for new methods in dynamics, geometry and combinatorial group theory. We present some of the ideas, results (old and recent), and interpretations that illustrate the multiple facets of the subject.References
- L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875 (Russian). MR 0113985
- Roy L. Adler, Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 1, 1–56. MR 1477538, DOI 10.1090/S0273-0979-98-00737-X
- Roy L. Adler and Leopold Flatto, Cross section maps for geodesic flows. I. The modular surface, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 103–161. MR 670077
- Roy L. Adler and Leopold Flatto, Cross section map for the geodesic flow on the modular surface, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 9–24. MR 737384, DOI 10.1090/conm/026/737384
- Roy L. Adler and Leopold Flatto, The backward continued fraction map and geodesic flow, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 487–492. MR 779707, DOI 10.1017/S0143385700002583
- Roy Adler and Leopold Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 229–334. MR 1085823, DOI 10.1090/S0273-0979-1991-16076-3
- R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573–1576. MR 212156, DOI 10.1073/pnas.57.6.1573
- Pierre Arnoux, Le codage du flot géodésique sur la surface modulaire, Enseign. Math. (2) 40 (1994), no. 1-2, 29–48 (French, with English and French summaries). MR 1279059 [Ar]Artin E. Artin, Ein Mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg 3 (1924), 170–175.
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Joan S. Birman and Caroline Series, Dehn’s algorithm revisited, with applications to simple curves on surfaces, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 451–478. MR 895628 [Bh]BirkhoffPont G. D. Birkhoff, Nouvelles recherches sur les systèmes dynamique, Memoriae Pont. Acad. Sci. Novi Lyncaei, s. 3, Vol. 1, 1935, pp. 85–216 (according to the collected works).
- Rufus Bowen, The equidistribution of closed geodesics, Amer. J. Math. 94 (1972), 413–423. MR 315742, DOI 10.2307/2374628
- Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170. MR 556585, DOI 10.1007/BF02684772 [D]Dirichlet P. G. L. Dirichlet, Vereinfachung der Theorie der binaren quadratischen Formen von positiver Determinante, Abh. K. Akad. Wiss. Berlin Math. (1854), 99–115. [Fo1]Fo L. Ford, A geometric proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35 (1917), 59–65. [Fo2]Fo1 L. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), no. 1, 1–42.
- L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), no. 9, 586–601. MR 1524411, DOI 10.2307/2302799
- David Fried, Symbolic dynamics for triangle groups, Invent. Math. 125 (1996), no. 3, 487–521. MR 1400315, DOI 10.1007/s002220050084
- David Fried, Reduction theory over quadratic imaginary fields, J. Number Theory 110 (2005), no. 1, 44–74. MR 2114673, DOI 10.1016/j.jnt.2004.08.001
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656, DOI 10.1007/978-1-4939-7560-0
- David J. Grabiner and Jeffrey C. Lagarias, Cutting sequences for geodesic flow on the modular surface and continued fractions, Monatsh. Math. 133 (2001), no. 4, 295–339. MR 1915877, DOI 10.1007/PL00010093
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- Boris Gurevich and Svetlana Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J. 1 (2001), no. 4, 569–582, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901076, DOI 10.17323/1609-4514-2001-1-4-569-582 [Ha]Hadamard J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl. (5) 4 (1898), 27–73.
- Gustav A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2) 35 (1934), no. 4, 787–808. MR 1503197, DOI 10.2307/1968495
- Gustav A. Hedlund, A Metrically Transitive Group Defined by the Modular Groups, Amer. J. Math. 57 (1935), no. 3, 668–678. MR 1507102, DOI 10.2307/2371195 [He3]HedlundSurvey G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241–260.
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Heinz Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1–26 (German). MR 109212, DOI 10.1007/BF01369663 [Hum]Humbert M. G. Humbert, Sur les fractions continues et les formes quadratiques binaires indéfinies, C. R. Acad. Sci. Paris 162 (1916), 23–26. [H1]Hurwitz1 A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeler Grossen, Acta Math. 12 (1889) 367–405. [H2]Hurwitz2 A. Hurwitz, Über die angenaherte Darstellungen der Irrationalzahlen durch rationale Brüche, Math. Ann. 39 (1891) 279–284. [H3]Hurwitz3 A. Hurwitz, Über die Reduktion der binaren quadratischen Formen, Math. Ann. 45 (1894), 85–117.
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Svetlana Katok, Reduction theory for Fuchsian groups, Math. Ann. 273 (1986), no. 3, 461–470. MR 824433, DOI 10.1007/BF01450733
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
- Svetlana Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata 63 (1996), no. 2, 123–145. MR 1413625, DOI 10.1007/BF00148213
- Svetlana Katok and Ilie Ugarcovici, Geometrically Markov geodesics on the modular surface, Mosc. Math. J. 5 (2005), no. 1, 135–155 (English, with English and Russian summaries). MR 2153471, DOI 10.17323/1609-4514-2005-5-1-135-155
- Boris Gurevich and Svetlana Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J. 1 (2001), no. 4, 569–582, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901076, DOI 10.17323/1609-4514-2001-1-4-569-582 [Ko]Koebe P. Koebe, Riemannsche Mannigfaltigkeiten und nicht euklidische Raumformen, Sitzungsberichte der Preußischen Akademie der Wissenschaften, I (1927), 164–196; II, III (1928), 345–442; IV (1929), 414–557; V, VI (1930), 304–364, 504–541; VII (1931), 506–534.
- Cornelis Kraaikamp and Artur Lopes, The theta group and the continued fraction expansion with even partial quotients, Geom. Dedicata 59 (1996), no. 3, 293–333. MR 1371228, DOI 10.1007/BF00181695 [Le]Le P. Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard, Compositio Math. 3 (1936), 286–303. [Ma]Markoff A. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381–406.
- Dieter H. Mayer, On a $\zeta$ function related to the continued fraction transformation, Bull. Soc. Math. France 104 (1976), no. 2, 195–203. MR 418168, DOI 10.24033/bsmf.1825
- Dieter H. Mayer, The thermodynamic formalism approach to Selberg’s zeta function for $\textrm {PSL}(2,\textbf {Z})$, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 55–60. MR 1080004, DOI 10.1090/S0273-0979-1991-16023-4
- Hermann Minkowski, Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York-London, 1968 (German). MR 0249269 [M1]Morse M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 33–51. [M2]Morse2 M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–100.
- R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 69–83. MR 684245, DOI 10.1017/s0143385700009585 [N]Nielsen J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), 189–358.
- Donald S. Ornstein, The isomorphism theorem for Bernoulli flows, Advances in Math. 10 (1973), 124–142. MR 318452, DOI 10.1016/0001-8708(73)90101-1
- Donald S. Ornstein and Benjamin Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184–198. MR 325926, DOI 10.1007/BF02762673
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Mark Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France 114 (1986), no. 4, 431–446. MR 882589, DOI 10.24033/bsmf.2064
- A. B. Polyakov, On a measure with maximal entropy for a special flow over a local perturbation of a countable topological Bernoulli scheme, Mat. Sb. 192 (2001), no. 7, 73–96 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 7-8, 1001–1024. MR 1861374, DOI 10.1070/SM2001v192n07ABEH000580
- M. E. Ratner, Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki 6 (1969), 693–704 (Russian). MR 260977
- David Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954), 549–563. MR 65632
- David Rosen and Thomas A. Schmidt, Hecke groups and continued fractions, Bull. Austral. Math. Soc. 46 (1992), no. 3, 459–474. MR 1190349, DOI 10.1017/S0004972700012120 [Sa]Sa P. Sarnak, Prime geodesic theorems, PhD thesis, Stanford, 1980.
- S. V. Savchenko, Special flows constructed from countable topological Markov chains, Funktsional. Anal. i Prilozhen. 32 (1998), no. 1, 40–53, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 1, 32–41. MR 1627271, DOI 10.1007/BF02465754
- Thomas A. Schmidt and Mark Sheingorn, Length spectra of the Hecke triangle groups, Math. Z. 220 (1995), no. 3, 369–397. MR 1362251, DOI 10.1007/BF02572621
- Caroline Series, On coding geodesics with continued fractions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) Monograph. Enseign. Math., vol. 29, Univ. Genève, Geneva, 1981, pp. 67–76. MR 609896
- Caroline Series, Symbolic dynamics for geodesic flows, Acta Math. 146 (1981), no. 1-2, 103–128. MR 594628, DOI 10.1007/BF02392459
- Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI 10.1112/jlms/s2-31.1.69
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI 10.1017/S0143385700003722 [Sm]Smith H. J. S. Smith, Mémoire sur les Équations Modulaires, Atti R. Accad. Lincei, Mem. fis. mat. (3), 1 (1877), 136–149; English transl. Coll. Math. Papers, II, 224–241.
- John Stillwell, Geometry of surfaces, Universitext, Springer-Verlag, New York, 1992. MR 1171453, DOI 10.1007/978-1-4612-0929-4
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441–530. MR 866707, DOI 10.2307/2007091
- D. B. Zagier, Zetafunktionen und quadratische Körper, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1981 (German). Eine Einführung in die höhere Zahlentheorie. [An introduction to higher number theory]. MR 631688, DOI 10.1007/978-3-642-61829-1
Additional Information
- Svetlana Katok
- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 99110
- Email: katok_s@math.psu.edu
- Ilie Ugarcovici
- Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005
- Address at time of publication: Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614
- Email: idu@rice.edu, iugarcov@depaul.edu
- Received by editor(s): February 27, 2005
- Received by editor(s) in revised form: January 24, 2006
- Published electronically: October 2, 2006
- Additional Notes: This paper is based on the AWM Emmy Noether Lecture given by the first author at the Joint Mathematics Meetings in January 2004 in Phoenix, AZ
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 44 (2007), 87-132
- MSC (2000): Primary 37D40, 37B40, 20H05
- DOI: https://doi.org/10.1090/S0273-0979-06-01115-3
- MathSciNet review: 2265011