Euler and algebraic geometry
Author:
Burt Totaro
Journal:
Bull. Amer. Math. Soc. 44 (2007), 541-559
MSC (2000):
Primary 14C30; Secondary 14D05, 14E05
DOI:
https://doi.org/10.1090/S0273-0979-07-01178-0
Published electronically:
June 22, 2007
MathSciNet review:
2338364
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Yves André, 𝐺-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016
- 2. Yves André and Francesco Baldassarri, Geometric theory of 𝐺-functions, Arithmetic geometry (Cortona, 1994) Sympos. Math., XXXVII, Cambridge Univ. Press, Cambridge, 1997, pp. 1–22. MR 1472489
- 3. Arnaud Beauville, Les familles stables de courbes elliptiques sur 𝑃¹ admettant quatre fibres singulières, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 19, 657–660 (French, with English summary). MR 664643
- 4. Bassem Ben Hamed and Lubomir Gavrilov, Families of Painlevé VI equations having a common solution, Int. Math. Res. Not. 60 (2005), 3727–3752. MR 2205113, https://doi.org/10.1155/IMRN.2005.3727
- 5. C. Birkar, P. Cascini, C. Hacon, and J. McKernan. Existence of minimal models for varieties of log general type. arXiv:math.AG/0610203
- 6. Philip Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), no. 1, 167–208. MR 2107041, https://doi.org/10.1112/S0024611504015011
- 7. Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74. MR 1115626, https://doi.org/10.1016/0550-3213(91)90292-6
- 8. James Carlson, Stefan Müller-Stach, and Chris Peters, Period mappings and period domains, Cambridge Studies in Advanced Mathematics, vol. 85, Cambridge University Press, Cambridge, 2003. MR 2012297
- 9. Antoine Chambert-Loir, Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André, D. & G. Chudnovsky), Astérisque 282 (2002), Exp. No. 886, viii, 175–209 (French, with French summary). Séminaire Bourbaki, Vol. 2000/2001. MR 1975179
- 10. D. V. Chudnovsky and G. V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations, Number theory (New York, 1983–84) Lecture Notes in Math., vol. 1135, Springer, Berlin, 1985, pp. 52–100. MR 803350, https://doi.org/10.1007/BFb0074601
- 11. K. Corlette and C. Simpson. On the classification of rank two representations of quasiprojective fundamental groups. arXiv:math.AG/0702287
- 12. A. Corti, ed. Flips for 3-folds and 4-folds. Oxford (2007).
- 13. Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174
- 14. Boris Dubrovin, Painlevé transcendents in two-dimensional topological field theory, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 287–412. MR 1713580
- 15. B. Dubrovin and M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), no. 1, 55–147. MR 1767271, https://doi.org/10.1007/PL00005790
- 16. Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan, An introduction to 𝐺-functions, Annals of Mathematics Studies, vol. 133, Princeton University Press, Princeton, NJ, 1994. MR 1274045
- 17. L. Euler. Solutio generalis quorundam problematum Diophanteorum quae vulgo nonnisi solutiones speciales admittere videntur. Leonhardi Euleri opera omnia, v. 1, pt. 2, 428-458. Teubner (1915).
- 18. Leonhard Euler, Einleitung in die Analysis des Unendlichen. Teil 1, Springer-Verlag, Berlin, 1983 (German). Reprint of the 1885 edition; With an introduction by Wolfgang Walter. MR 715928
- 19. Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- 20. Wiliam M. Goldman and Walter D. Neumann, Homological action of the modular group on some cubic moduli spaces, Math. Res. Lett. 12 (2005), no. 4, 575–591. MR 2155233, https://doi.org/10.4310/MRL.2005.v12.n4.a11
- 21. Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296. MR 258824, https://doi.org/10.1090/S0002-9904-1970-12444-2
- 22. M. Harris, N. Shepherd-Barron, and R. Taylor. A family of Calabi-Yau varieties and potential automorphy. Preprint (2006).
- 23. N. J. Hitchin, Poncelet polygons and the Painlevé equations, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 151–185. MR 1351506
- 24. Rolf-Peter Holzapfel, Geometry and arithmetic around Euler partial differential equations, Mathematics and its Applications (East European Series), vol. 11, D. Reidel Publishing Co., Dordrecht, 1986. MR 867406
- 25. Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow, Mirror symmetry, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa. MR 2003030
- 26. Dale Husemöller, Elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 111, Springer-Verlag, New York, 2004. With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. MR 2024529
- 27. Katsunori Iwasaki, Hironobu Kimura, Shun Shimomura, and Masaaki Yoshida, From Gauss to Painlevé, Aspects of Mathematics, E16, Friedr. Vieweg & Sohn, Braunschweig, 1991. A modern theory of special functions. MR 1118604
- 28. Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. MR 291177
- 29. Nicholas M. Katz, Algebraic solutions of differential equations (𝑝-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1–118. MR 337959, https://doi.org/10.1007/BF01389714
- 30. Nicholas M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. MR 1366651
- 31. F. Klein and R. Fricke. Vorlesungen über die Theorie der elliptischen Modulfunktionen, v. 1. Teubner (1890).
- 32. János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787
- 33. Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR 1852188
- 34. Shigefumi Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, https://doi.org/10.1090/S0894-0347-1988-0924704-X
- 35. Miles Reid, Twenty-five years of 3-folds—an old person’s view, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 313–343. MR 1798985
- 36. Igor R. Shafarevich, Basic algebraic geometry. 2, 2nd ed., Springer-Verlag, Berlin, 1994. Schemes and complex manifolds; Translated from the 1988 Russian edition by Miles Reid. MR 1328834
- 37. V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 82–219; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 75–213. MR 1993750
- 38. Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- 39. Y.-T. Siu. A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring. arXiv:math.AG/0610740
- 40.
R. Taylor. Automorphy for some
-adic lifts of automorphic mod
Galois representations. II. Preprint (2006).
- 41. Michel Waldschmidt, Transcendence of periods: the state of the art, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 435–463. MR 2251476, https://doi.org/10.4310/PAMQ.2006.v2.n2.a3
- 42. André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177
- 43. Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
- 44. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR 0178117
- 45. Oscar Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2) 76 (1962), 560–615. MR 141668, https://doi.org/10.2307/1970376
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14C30, 14D05, 14E05
Retrieve articles in all journals with MSC (2000): 14C30, 14D05, 14E05
Additional Information
Burt Totaro
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB, England
Email:
b.totaro@dpmms.cam.ac.uk
DOI:
https://doi.org/10.1090/S0273-0979-07-01178-0
Received by editor(s):
April 26, 2007
Published electronically:
June 22, 2007
Article copyright:
© Copyright 2007
Burt Totaro