Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Terry Gannon
Title: Moonshine beyond the monster: The bridge connecting algebra, modular forms and physics
Additional book information: Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, Massachusetts, 2006, 492 pp., ISBN 978-0-521-83531-2, US$130.00$

References [Enhancements On Off] (What's this?)

  • C. J. Cummins and T. Gannon, Modular equations and the genus zero property of moonshine functions, Invent. Math. 129 (1997), no. 3, 413–443. MR 1465329, DOI 10.1007/s002220050167
  • J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI 10.1112/blms/11.3.308
  • John H. Conway, Simon P. Norton, and Leonard H. Soicher, The Bimonster, the group $Y_{555}$, and the projective plane of order $3$, Computers in algebra (Chicago, IL, 1985) Lecture Notes in Pure and Appl. Math., vol. 111, Dekker, New York, 1988, pp. 27–50. MR 1060755
  • Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
  • [D]
    Duncan, John F. Moonshine for Rudvalis's sporadic group I, arXiv:math/0609449
  • I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function $J$ as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, , Phys. Sci., 3256–3260. MR 747596, DOI 10.1073/pnas.81.10.3256
  • Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, DOI 10.1007/BF01389186
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136, DOI 10.1007/978-3-663-14045-0
  • Mark Mahowald and Mike Hopkins, The structure of 24 dimensional manifolds having normal bundles which lift to $B\textrm {O}[8]$, Recent progress in homotopy theory (Baltimore, MD, 2000) Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 89–110. MR 1887530, DOI 10.1090/conm/293/04944
  • A. A. Ivanov, A geometric characterization of the Monster, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 46–62. MR 1200249, DOI 10.1017/CBO9780511629259.007
  • V. G. Kac, Infinite-dimensional algebras, Dedekind’s $\eta$-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), no. 2, 85–136. MR 513845, DOI 10.1016/0001-8708(78)90033-6
  • Yasuyuki Kawahigashi and Roberto Longo, Local conformal nets arising from framed vertex operator algebras, Adv. Math. 206 (2006), no. 2, 729–751. MR 2263720, DOI 10.1016/j.aim.2005.11.003
  • Ching Hung Lam and Masahiko Miyamoto, Niemeier lattices, Coxeter elements, and McKay’s $E_8$-observation on the Monster simple group, Int. Math. Res. Not. , posted on (2006), Art. ID 35967, 27. MR 2219232, DOI 10.1155/IMRN/2006/35967
  • Masahiko Miyamoto, $21$ involutions acting on the Moonshine module, J. Algebra 175 (1995), no. 3, 941–965. MR 1341752, DOI 10.1006/jabr.1995.1220
  • Urmie Ray, Automorphic forms and Lie superalgebras, Algebra and Applications, vol. 5, Springer, Dordrecht, 2006. MR 2286867
  • A. J. E. Ryba, Modular Moonshine?, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 307–336. MR 1372729, DOI 10.1090/conm/193/02378
  • Stephen D. Smith, On the head characters of the Monster simple group, Finite groups—coming of age (Montreal, Que., 1982) Contemp. Math., vol. 45, Amer. Math. Soc., Providence, RI, 1985, pp. 303–313. MR 822245, DOI 10.1090/conm/045/822245
  • J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), no. 3, 352–353. MR 554402, DOI 10.1112/blms/11.3.352
  • [W]
    Witten, E. Three-Dimensional Gravity Revisited, arXiv:0706.3359

    Review Information:

    Reviewer: R. E. Borcherds
    Affiliation: University of California at Berkeley
    Journal: Bull. Amer. Math. Soc. 45 (2008), 675-679
    Published electronically: June 25, 2008
    Review copyright: © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.