Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Invisibility and inverse problems


Authors: Allan Greenleaf, Yaroslav Kurylev, Matti Lassas and Gunther Uhlmann
Journal: Bull. Amer. Math. Soc. 46 (2009), 55-97
MSC (2000): Primary 35R30, 78A46; Secondary 58J05, 78A10
DOI: https://doi.org/10.1090/S0273-0979-08-01232-9
Published electronically: October 14, 2008
MathSciNet review: 2457072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe recent theoretical and experimental progress on making objects invisible. Ideas for devices that would have once seemed fanciful may now be at least approximately realized physically, using a new class of artificially structured materials, metamaterials. The equations that govern a variety of wave phenomena, including electrostatics, electromagnetism, acoustics and quantum mechanics, have transformation laws under changes of variables which allow one to design material parameters that steer waves around a hidden region, returning them to their original path on the far side. Not only are observers unaware of the contents of the hidden region, they are not even aware that something is being hidden; the object, which casts no shadow, is said to be cloaked. Proposals for, and even experimental implementations of, such cloaking devices have received the most attention, but other devices having striking effects on wave propagation, unseen in nature, are also possible. These designs are initially based on the transformation laws of the relevant PDEs, but due to the singular transformations needed for the desired effects, care needs to be taken in formulating and analyzing physically meaningful solutions. We recount the recent history of the subject and discuss some of the mathematical and physical issues involved.


References [Enhancements On Off] (What's this?)

  • M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, On the inverse scattering transform for the Kadomtsev-Petviashvili equation, Stud. Appl. Math. 69 (1983), no. 2, 135–143. MR 715426, DOI https://doi.org/10.1002/sapm1983692135
  • Grégoire Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), no. 6, 1482–1518. MR 1185639, DOI https://doi.org/10.1137/0523084
  • Allaire2 G. Allaire and A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, In A. Bourgeat, C. Carasso, S. Luckhaus and A. Mikelic (eds.), Mathematical Modelling of Flow through Porous Media, 15–25, Singapore, World Scientific, 1995. AE A. Alu and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72, 016623 (2005)
  • Kari Astala and Lassi Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265–299. MR 2195135, DOI https://doi.org/10.4007/annals.2006.163.265
  • Kari Astala, Lassi Päivärinta, and Matti Lassas, Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations 30 (2005), no. 1-3, 207–224. MR 2131051, DOI https://doi.org/10.1081/PDE-200044485
  • ALP2 K. Astala, M. Lassas, and L. Päivärinta, Limits of visibility and invisibility for Calderón’s inverse problem in the plane, in preparation.
  • H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
  • R. Beals and R. Coifman, Scattering, transformations spectrales et équations d’évolution non linéaire. II, Goulaouic-Meyer-Schwartz Seminar, 1981/1982, École Polytech., Palaiseau, 1982, pp. Exp. No. XXI, 9 (French). MR 671618
  • R. Beals and R. R. Coifman, Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 45–70. MR 812283, DOI https://doi.org/10.1090/pspum/043/812283
  • Y. Benveniste and T. Miloh, Neutral inhomogeneities in conduction phenomena, J. Mech. Phys. Solids 47 (1999), no. 9, 1873–1892. MR 1695877, DOI https://doi.org/10.1016/S0022-5096%2898%2900127-6
  • Yu. M. Berezanski, The uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Trudy Moskov. Mat. Obšč. 7 (1958), 1–62 (Russian). MR 0101377
  • Liliana Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), no. 6, R99–R136. MR 1955896, DOI https://doi.org/10.1088/0266-5611/18/6/201
  • Russell M. Brown and Rodolfo H. Torres, Uniqueness in the inverse conductivity problem for conductivities with $3/2$ derivatives in $L^p,\ p>2n$, J. Fourier Anal. Appl. 9 (2003), no. 6, 563–574. MR 2026763, DOI https://doi.org/10.1007/s00041-003-0902-3
  • Russell M. Brown and Gunther A. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations 22 (1997), no. 5-6, 1009–1027. MR 1452176, DOI https://doi.org/10.1080/03605309708821292
  • A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl. 16 (2008), no. 1, 19–33. MR 2387648, DOI https://doi.org/10.1515/jiip.2008.002
  • Cai W. Cai, U. Chettiar, A. Kildishev, V. Shalaev, Optical cloaking with metamaterials, Nature Photonics 1 (2007), 224–227. Cai2 W. Cai, U. Chettiar, A. Kildishev, G. Milton and V. Shalaev, Non-magnetic cloak without reflection, arXiv:0707.3641 (2007).
  • Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73. MR 590275
  • Sagun Chanillo, A problem in electrical prospection and an $n$-dimensional Borg-Levinson theorem, Proc. Amer. Math. Soc. 108 (1990), no. 3, 761–767. MR 998731, DOI https://doi.org/10.1090/S0002-9939-1990-0998731-1
  • Ch1 H. Chen and C.T. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90 (2007), 241105. Ch2 H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma and C.T. Chan, Extending the bandwidth of electromagnetic cloaks, Phys. Rev. B, 76 (2007), 241104(R). Ch3 H. Chen and C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91 (2007), 183518. CWZK H.-S. Chen, B.-I. Wu, B. Zhang and J.A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett. 99 (2007), 063903.
  • Margaret Cheney, David Isaacson, and Jonathan C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85–101. MR 1669729, DOI https://doi.org/10.1137/S0036144598333613
  • Andrej Cherkaev, Variational methods for structural optimization, Applied Mathematical Sciences, vol. 140, Springer-Verlag, New York, 2000. MR 1763123
  • CPSSP S. Cummer, B.-I. Popa, D. Schurig, D. Smith and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E 74, 036621 (2006). CuSc S. Cummer and D. Schurig, One path to acoustic cloaking, New Jour. Phys. 9 (2007), 45. Cu S. Cummer, et al., Scattering theory derivation of a 3D acoustic cloaking shell, Phys. Rev. Lett. 100 (2008), 024301.
  • Gianni Dal Maso, An introduction to $\Gamma $-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1201152
  • Dolin L. S. Dolin, To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izv. Vuzove, Radiofizika 4 (1961), 964-967.
  • David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys. 271 (2007), no. 2, 467–488. MR 2287913, DOI https://doi.org/10.1007/s00220-006-0151-9
  • ER A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Physical Review 48 (1935), 73. Elef G. Eleftheriades and K. Balmain, eds., Negative-Refraction Metamaterials, IEEE/Wiley, Hoboken (2005).
  • L. D. Faddeev, The inverse problem in the quantum theory of scattering. II, Current problems in mathematics, Vol. 3 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1974, pp. 93–180, 259. (loose errata) (Russian). MR 0523015
  • Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann, Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys. 275 (2007), no. 3, 749–789. MR 2336363, DOI https://doi.org/10.1007/s00220-007-0311-6
  • GKLU2 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99 (2007), 183901. GKLU3 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Improvement of cylindrical cloaking with the SHS lining, Optics Express 15 (2007), 12717–12734. GKLU4 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Electromagnetic wormholes via handlebody constructions, Comm. Math. Phys. 281 (2008), 369–385. GKLU5 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Comment on “Scattering theory derivation of a 3D acoustic cloaking shell”, arXiv:0801.3279 (2008). GKLU6 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Isotropic transformation optics: Approximate acoustic and quantum cloaking, New Journal of Physics (to appear); arXiv:0806.0085 (2008). GKLU7 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Approximate quantum cloaking and almost trapped states, Phys. Rev. Lett. (to appear); arXiv:0806.0368 (2008). GKLU8 A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Approximate quantum and acoustic cloaking, in preparation.
  • Allan Greenleaf, Matti Lassas, and Gunther Uhlmann, The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction, Comm. Pure Appl. Math. 56 (2003), no. 3, 328–352. MR 1941812, DOI https://doi.org/10.1002/cpa.10061
  • GLU2 A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected in EIT, Physiolog. Meas. (special issue on Impedance Tomography) 24 (2003), 413–420.
  • Allan Greenleaf, Matti Lassas, and Gunther Uhlmann, On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett. 10 (2003), no. 5-6, 685–693. MR 2024725, DOI https://doi.org/10.4310/MRL.2003.v10.n5.a11
  • GS C. Guillarmou, A. Sa Barreto, Inverse problems for Einstein manifolds, arXiv:0710.1136v1 (2007)
  • Gennadi Henkin and Vincent Michel, On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator, Geom. Funct. Anal. 17 (2007), no. 1, 116–155. MR 2306654, DOI https://doi.org/10.1007/s00039-006-0590-7
  • HLS I. Hänninen, I. Lindell and A. Sihvola, Realization of generalized soft-and-hard boundary, Prog. Electromag. Res. PIER 64 (2006), 317. Ho D. Holder, Electrical Impedance Tomography, Institute of Physics Publishing, Bristol and Philadelphia (2005). Hoff A. Hoffman, et al., Negative refraction in semiconductor metamaterials, Nature Materials, doi:10.1038/nmat2033 (14 Oct 2007). HIMS D. Isaacson, J. Mueller and S. Siltanen, Special issue on electrical impedance tomography of Physiolog. Meas. 24, 2003.
  • Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, The Calderón problem with partial data, Ann. of Math. (2) 165 (2007), no. 2, 567–591. MR 2299741, DOI https://doi.org/10.4007/annals.2007.165.567
  • J A. Jenkins, Metamaterials: Lost in space, Nature Photonics 2, 11–11 (01 Jan 2008).
  • Alexander Katchalov, Yaroslav Kurylev, and Matti Lassas, Inverse boundary spectral problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 123, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1889089
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • Ke M. Kerker, Invisible bodies, J. Opt. Soc. Am. 65 (1975), 376. Ki1 P.-S. Kildal, Definition of artificially soft and hard surfaces for electromagnetic waves, Electron. Lett. 24 (1988), 168–170. Ki2 P.-S. Kildal, Artificially soft and hard surfaces in electromagnetics, IEEE Trans. Ant. and Prop. 38, no. 10, 1537–1544 (1990). Ki3 P.-S. Kildal, A. Kishk, Z. Sipus, RF invisibility using metamaterials: Harry Potter’s cloak or the Emperor’s new clothes?, IEEE APS Int. Symp., Hawai, June, 2007.
  • Tero Kilpeläinen, Juha Kinnunen, and Olli Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), no. 3, 233–247. MR 1752853, DOI https://doi.org/10.1023/A%3A1008601220456
  • talkVogelius R. Kohn, D. Onofrei, M. Vogelius and M. Weinstein, Cloaking via change of variables for the Helmholtz equation, in preparation.
  • R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Problems 24 (2008), no. 1, 015016, 21. MR 2384775, DOI https://doi.org/10.1088/0266-5611/24/1/015016
  • Ko R. Kohn and S. Shipman, Magnetism and homogenization of micro-resonators, arXiv:0712.2210v1 (2007).
  • Robert V. Kohn and Michael Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, Inverse problems (New York, 1983) SIAM-AMS Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1984, pp. 113–123. MR 773707, DOI https://doi.org/10.1002/cpa.3160370302
  • Ville Kolehmainen, Matti Lassas, and Petri Ola, The inverse conductivity problem with an imperfectly known boundary, SIAM J. Appl. Math. 66 (2005), no. 2, 365–383. MR 2203860, DOI https://doi.org/10.1137/040612737
  • Ya. V. Kurylëv, Multi-dimensional inverse boundary problems by BC-method: groups of transformations and uniqueness results, Math. Comput. Modelling 18 (1993), no. 1, 33–45. MR 1245191, DOI https://doi.org/10.1016/0895-7177%2893%2990077-C
  • Yaroslav Kurylev, Matti Lassas, and Erkki Somersalo, Maxwell’s equations with a polarization independent wave velocity: direct and inverse problems, J. Math. Pures Appl. (9) 86 (2006), no. 3, 237–270 (English, with English and French summaries). MR 2257731, DOI https://doi.org/10.1016/j.matpur.2006.01.008
  • LSMSP N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100, (2008) 207402.
  • Matti Lassas and Gunther Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 771–787 (English, with English and French summaries). MR 1862026, DOI https://doi.org/10.1016/S0012-9593%2801%2901076-X
  • Matti Lassas, Michael Taylor, and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom. 11 (2003), no. 2, 207–221. MR 2014876, DOI https://doi.org/10.4310/CAG.2003.v11.n2.a2
  • Richard B. Lavine and Adrian I. Nachman, The Faddeev-Lippmann-Schwinger equation in multidimensional quantum inverse scattering, Inverse problems: an interdisciplinary study (Montpellier, 1986) Adv. Electron. Electron Phys., Suppl. 19, Academic Press, London, 1987, pp. 169–174. MR 1005570
  • John M. Lee and Gunther Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), no. 8, 1097–1112. MR 1029119, DOI https://doi.org/10.1002/cpa.3160420804
  • Ulf Leonhardt, Optical conformal mapping, Science 312 (2006), no. 5781, 1777–1780. MR 2237569, DOI https://doi.org/10.1126/science.1126493
  • LeP U. Leonhardt and T. Philbin, General relativity in electrical engineering, New J. Phys. 8 (2006), 247; doi:10.1088/1367-2630/8/10/247. NJP U. Leonhardt and D. Smith, eds., Focus issue on Cloaking and Transformation Optics, New Jour. Phys. (2008). LeT U. Leonhardt and T. Tyc, Superantenna made of transformation media, arXiv:0806.0070v1 (2008)
  • Ismo V. Lindell, Generalized soft-and-hard surface, IEEE Trans. Antennas and Propagation 50 (2002), no. 7, 926–929. MR 1929635, DOI https://doi.org/10.1109/TAP.2002.800698
  • Liu N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, Three-dimensional photonic metamaterials at optical frequencies, Nature Materials 7 (2008), 31–37. Mil D. Miller, On perfect cloaking, Opt. Exp. 14 (2006), 12457–12466. Miltbook G. Milton, The Theory of Composites, Camb. U. Pr., 2001. Milt G. Milton, New metamaterials with macroscopic behavior outside that of continuum elastodynamics, New Jour. Phys. 9 (2007), 359. MBW G. Milton, M. Briane, and J. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8 (2006), 248.
  • Graeme W. Milton and Nicolae-Alexandru P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2074, 3027–3059. MR 2263683, DOI https://doi.org/10.1098/rspa.2006.1715
  • Adrian I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2) 128 (1988), no. 3, 531–576. MR 970610, DOI https://doi.org/10.2307/1971435
  • Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71–96. MR 1370758, DOI https://doi.org/10.2307/2118653
  • Adrian I. Nachman and Mark J. Ablowitz, A multidimensional inverse-scattering method, Stud. Appl. Math. 71 (1984), no. 3, 243–250. MR 769078, DOI https://doi.org/10.1002/sapm1984713243
  • Adrian Nachman, John Sylvester, and Gunther Uhlmann, An $n$-dimensional Borg-Levinson theorem, Comm. Math. Phys. 115 (1988), no. 4, 595–605. MR 933457
  • R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta \psi +(v(x)-Eu(x))\psi =0$, Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 11–22, 96 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 4, 263–272 (1989). MR 976992, DOI https://doi.org/10.1007/BF01077418
  • Norris A. Norris, Acoustic cloaking theory, Proc. Royal Soc. A, doi:10.1098/rspa.2008.0076 (2008).
  • T. Ochiai, U. Leonhardt, and J. C. Nacher, A novel design of dielectric perfect invisibility devices, J. Math. Phys. 49 (2008), no. 3, 032903, 13. MR 2406797, DOI https://doi.org/10.1063/1.2889717
  • Petri Ola, Lassi Päivärinta, and Erkki Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J. 70 (1993), no. 3, 617–653. MR 1224101, DOI https://doi.org/10.1215/S0012-7094-93-07014-7
  • Lassi Päivärinta, Alexander Panchenko, and Gunther Uhlmann, Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana 19 (2003), no. 1, 57–72. MR 1993415, DOI https://doi.org/10.4171/RMI/338
  • J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312 (2006), no. 5781, 1780–1782. MR 2237570, DOI https://doi.org/10.1126/science.1125907
  • PSS2 J.B. Pendry, D. Schurig, and D.R. Smith, Calculation of material properties and ray tracing in transformation media, Opt. Exp. 14 (2006) 9794. Podc Physorg.com, The Mathematics of Cloaking, http:// www.physorg.com/news86358402.html (Dec. 26, 2006). Ra1 M. Rahm, D. Schurig, D. Roberts, S. Cummer, D. Smith, J. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,, Photonics and Nanostructures, 6 (2008), 87–95. Ra2 M. Rahm, S. Cummer, D. Schurig, J. Pendry and D. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett. 100 (2008), 063903. RYNQ Z. Ruan, M. Yan, C. Neff and M. Qiu, Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations, Phys. Rev. Lett. 99 (2007), 113903. Sc D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006), 977–980. Sh V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, Negative index of refraction in optical metamaterials Opt. Lett. 30 (2005), 3356–3358 SPR D. Schurig, J. Pendry, D. R. Smith, Transformation-designed optical elements Optics Express 15 (2007), 14772–14782. Shv G. Shvets, Metamaterials add an extra dimension, Nature Materials 7 (2008), 7–8. SP D. Smith and J. Pendry, Homogenization of metamaterials by field averaging, Jour. Opt. Soc. Am. B 23 (2006), 391–403. smol I. Smolyaninov, Y. Hung and C. Davis, Electromagnetic cloaking in the visible frequency range, arXiv:0709.2862v2 (2007).
  • Ziqi Sun and Gunther Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems 19 (2003), no. 5, 1001–1010. MR 2024685, DOI https://doi.org/10.1088/0266-5611/19/5/301
  • John Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201–232. MR 1038142, DOI https://doi.org/10.1002/cpa.3160430203
  • John Sylvester and Gunther Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), no. 1, 91–112. MR 820341, DOI https://doi.org/10.1002/cpa.3160390106
  • John Sylvester and Gunther Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153–169. MR 873380, DOI https://doi.org/10.2307/1971291
  • T K. Tsakmakidis and O. Hess, Optics: Watch your back, Nature 451, 27 (3 January 2008), doi:10.1038/451027a.
  • Roy Pike and Pierre Sabatier (eds.), Scattering. Vol. 1, 2, Academic Press, Inc., San Diego, CA, 2002. Scattering and inverse scattering in pure and applied science. MR 1878885
  • Gunther Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Harmonic analysis and partial differential equations (Chicago, IL, 1996) Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 295–345. MR 1743870
  • Gunther Uhlmann, Inverse boundary value problems and applications, Astérisque 207 (1992), 6, 153–211. Méthodes semi-classiques, Vol. 1 (Nantes, 1991). MR 1205179
  • Gunther Uhlmann and Jenn-Nan Wang, Complex spherical waves for the elasticity system and probing of inclusions, SIAM J. Math. Anal. 38 (2007), no. 6, 1967–1980. MR 2299437, DOI https://doi.org/10.1137/060651434
  • Gunther Uhlmann and András Vasy, Low-energy inverse problems in three-body scattering, Inverse Problems 18 (2002), no. 3, 719–736. MR 1910198, DOI https://doi.org/10.1088/0266-5611/18/3/313
  • walser R. Walser, in: W.S. Weiglhofer and A. Lakhtakia (Eds.), Introduction to Complex Mediums for Electromagnetics and Optics, S Press, Bellingham, WA, USA, 2003.
  • A. J. Ward and J. B. Pendry, Refraction and geometry in Maxwell’s equations, J. Modern Opt. 43 (1996), no. 4, 773–793. MR 1390260, DOI https://doi.org/10.1080/095003496155878
  • W1 R. Weder, A rigorous time-domain analysis of full-wave electromagnetic cloaking (Invisibility), arXiv:0704.0248 (2007). W2 R. Weder, A rigorous analysis of high order electromagnetic invisibility cloaks, Jour. Phys. A: Math. Theor. 41 (2008), 065207. W3 R. Weder, The boundary conditions for electromagnetic invisibility cloaks, arXiv:0801.3611 (2008). wood B. Wood and J. Pendry, Metamaterials at zero frequency, Jour. Phys.: Condens Matter 19 (2007), 076208. Ya A. Yaghjian and S. Maci, Alternative derivation of electromagnetic cloaks and concentrators, arXiv:0710.2933 (2007). YRQ M. Yan, Z. Ruan and M. Qiu, Scattering characteristics of simplified cylindrical invisibility cloaks, Opt. Exp. 15 (2007), 17772. Zhang1 B. Zhang, et al., Response of a cylindrical invisibility cloak to electromagnetic waves, Phys. Rev. B 76 (2007), 121101(R). Zhang2 B. Zhang, et al., Extraordinary surface voltage effect in the invisibility cloak with an active device inside, Phys. Rev. Lett. 100 (2008), 063904. Zhang S. Zhang, D. Genov, C. Sun and X. Zhang, Cloaking of matter waves, Phys. Rev. Lett. 100 (2008), 123002. Z F. Zolla, S, Guenneau, A. Nicolet and J. Pendry, Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect, Opt. Lett. 32 (2007), 1069–1071.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35R30, 78A46, 58J05, 78A10

Retrieve articles in all journals with MSC (2000): 35R30, 78A46, 58J05, 78A10


Additional Information

Allan Greenleaf
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627

Yaroslav Kurylev
Affiliation: Department of Mathematics, University College London, Gower Street, London, WC1E 5BT, United Kingdom

Matti Lassas
Affiliation: Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, Helsinki 02015, Finland

Gunther Uhlmann
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
MR Author ID: 175790

Received by editor(s): June 30, 2008
Published electronically: October 14, 2008
Additional Notes: The first author was partially supported by NSF grant DMS-0551894.
The third author was partially supported by Academy of Finland CoE Project 213476.
The fourth author was partially supported by the NSF and a Walker Family Endowed Professorship.
Article copyright: © Copyright 2008 American Mathematical Society