The Markov chain Monte Carlo revolution
HTML articles powered by AMS MathViewer
- by Persi Diaconis PDF
- Bull. Amer. Math. Soc. 46 (2009), 179-205 Request permission
Abstract:
The use of simulation for high-dimensional intractable computations has revolutionized applied mathematics. Designing, improving and understanding the new tools leads to (and leans on) fascinating mathematics, from representation theory through micro-local analysis.References
-
ald Aldous, D. and Fill, J. (2002). Reversible Markov chains and random walks on graphs. Monograph.
all Allen, M. P. and Tildesely, D. J. (1987). Computer simulation of liquids. Oxford University Press, Oxford.
- William J. Anderson, Continuous-time Markov chains, Springer Series in Statistics: Probability and its Applications, Springer-Verlag, New York, 1991. An applications-oriented approach. MR 1118840, DOI 10.1007/978-1-4612-3038-0
- Ery Arias-Castro, Persi Diaconis, and Richard Stanley, A super-class walk on upper-triangular matrices, J. Algebra 278 (2004), no. 2, 739–765. MR 2071663, DOI 10.1016/j.jalgebra.2004.04.005
- Dominique Bakry, Patrick Cattiaux, and Arnaud Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal. 254 (2008), no. 3, 727–759. MR 2381160, DOI 10.1016/j.jfa.2007.11.002 bar Barthe, F., Bakry, P., Cattiaux, P., and Guillin, A. (2008). Poincaré inequalities for log-concave probability measures: a Lyapounov function approach. Electron Comm. Probab., 13:60–66.
- Rabi N. Bhattacharya and Edward C. Waymire, Stochastic processes with applications, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1990. A Wiley-Interscience Publication. MR 1054645
- Louis J. Billera and Persi Diaconis, A geometric interpretation of the Metropolis-Hastings algorithm, Statist. Sci. 16 (2001), no. 4, 335–339. MR 1888448, DOI 10.1214/ss/1015346318
- Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1324786
- Pierre Brémaud, Markov chains, Texts in Applied Mathematics, vol. 31, Springer-Verlag, New York, 1999. Gibbs fields, Monte Carlo simulation, and queues. MR 1689633, DOI 10.1007/978-1-4757-3124-8 bub Bubley, B. and Dyer, M. (1997). Path coupling: a technique for proving rapid mixing in Markov chains. FOCS, pages 223–231.
- Krzysztof Burdzy and Wilfrid S. Kendall, Efficient Markovian couplings: examples and counterexamples, Ann. Appl. Probab. 10 (2000), no. 2, 362–409. MR 1768241, DOI 10.1214/aoap/1019487348
- Olivier Cappé, Eric Moulines, and Tobias Rydén, Inference in hidden Markov models, Springer Series in Statistics, Springer, New York, 2005. With Randal Douc’s contributions to Chapter 9 and Christian P. Robert’s to Chapters 6, 7 and 13; With Chapter 14 by Gersende Fort, Philippe Soulier and Moulines, and Chapter 15 by Stéphane Boucheron and Elisabeth Gassiat. MR 2159833
- Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli, Harmonic analysis on finite groups, Cambridge Studies in Advanced Mathematics, vol. 108, Cambridge University Press, Cambridge, 2008. Representation theory, Gelfand pairs and Markov chains. MR 2389056, DOI 10.1017/CBO9780511619823
- Ming-Hui Chen, Qi-Man Shao, and Joseph G. Ibrahim, Monte Carlo methods in Bayesian computation, Springer Series in Statistics, Springer-Verlag, New York, 2000. MR 1742311, DOI 10.1007/978-1-4612-1276-8
- Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu, Sequential Monte Carlo methods for statistical analysis of tables, J. Amer. Statist. Assoc. 100 (2005), no. 469, 109–120. MR 2156822, DOI 10.1198/016214504000001303 con Conner, S. (2003). Simulation and solving substitution codes. Master’s thesis, Department of Statistics, University of Warwick.
- Douglas E. Critchlow, Metric methods for analyzing partially ranked data, Lecture Notes in Statistics, vol. 34, Springer-Verlag, Berlin, 1985. MR 818986, DOI 10.1007/978-1-4612-1106-8
- Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069
- Persi Diaconis and R. L. Graham, Spearman’s footrule as a measure of disarray, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 262–268. MR 652736
- Donald St. P. Richards (ed.), Hypergeometric functions on domains of positivity, Jack polynomials, and applications, Contemporary Mathematics, vol. 138, American Mathematical Society, Providence, RI, 1992. MR 1199117, DOI 10.1090/conm/138
- Persi Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2359–2392. MR 2373317, DOI 10.1090/S0002-9947-07-04365-6 pd164 Diaconis, P., Khare, K., and Saloff-Coste, L. (2008a). Gibbs sampling, exponential families and orthogonal polynomials, with discussion. Statist. Sci., to appear. pd165 Diaconis, P. and Lebeau, G. (2008). Micro-local analysis for the Metropolis algorithm. Math. Z., to appear. pd167 Diaconis, P., Lebeau, G., and Michel, L. (2008b). Geometric analysis for the Metropolis algorithm on Lipshitz domains. Technical report, Department of Statistics, Stanford University, preprint. pd1692 Diaconis, P. and Limic, V. (2008). Spectral gap of the hard-core model on the unit interval. Technical report, Department of Statistics, Stanford University, preprint.
- Persi Diaconis and J. W. Neuberger, Numerical results for the Metropolis algorithm, Experiment. Math. 13 (2004), no. 2, 207–213. MR 2068894
- Persi Diaconis and Arun Ram, Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques, Michigan Math. J. 48 (2000), 157–190. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786485, DOI 10.1307/mmj/1030132713
- Persi Diaconis and Laurent Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab. 3 (1993), no. 3, 696–730. MR 1233621
- P. Diaconis and L. Saloff-Coste, Nash inequalities for finite Markov chains, J. Theoret. Probab. 9 (1996), no. 2, 459–510. MR 1385408, DOI 10.1007/BF02214660
- P. Diaconis and L. Saloff-Coste, What do we know about the Metropolis algorithm?, J. Comput. System Sci. 57 (1998), no. 1, 20–36. 27th Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV). MR 1649805, DOI 10.1006/jcss.1998.1576
- Persi Diaconis and Mehrdad Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 159–179. MR 626813, DOI 10.1007/BF00535487
- Persi Diaconis and Bernd Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), no. 1, 363–397. MR 1608156, DOI 10.1214/aos/1030563990 pd166 Diaconis, P. and Thiem, N. (2008). Supercharacter formulas for pattern groups. Trans. Amer. Math. Soc., to appear. dob Dobrushin, R. L. (1970). Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl.– Engl. Tr., 15:453–486. dou Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo in Practice. Springer-Verlag, New York.
- Christophe Dress and Werner Krauth, Cluster algorithm for hard spheres and related systems, J. Phys. A 28 (1995), no. 23, L597–L601. MR 1381129
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- James Allen Fill, Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Ann. Appl. Probab. 1 (1991), no. 1, 62–87. MR 1097464 fre Frenkel, D. and Smit, B. (2002). Understanding molecular simulation: From algorithms to applications, 2nd edition. Computational Science Series, Vol 1. Academic Press, San Diego. fuk Fukushima, M., Ōshima, Y., and Takeda, M. (1994). Dirichlet forms and symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin. gil Gill, J. (2007). Bayesian methods: a social and behavioral sciences approach, 2nd ed. Statistics in the Social and Behavioral Sciences. Chapman & Hall/CRC. Second edition.
- J. M. Hammersley and D. C. Handscomb, Monte Carlo methods, Methuen & Co., Ltd., London; Barnes & Noble, Inc., New York, 1965. MR 0223065 hen Hendrickson, A. O. F. (2008). Supercharacter theories of finite simple groups. PhD thesis, University of Wisconsin.
- James P. Hobert, Galin L. Jones, Brett Presnell, and Jeffrey S. Rosenthal, On the applicability of regenerative simulation in Markov chain Monte Carlo, Biometrika 89 (2002), no. 4, 731–743. MR 1946508, DOI 10.1093/biomet/89.4.731
- Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2129747, DOI 10.1201/9781420035216
- Akihito Hora and Nobuaki Obata, Quantum probability and spectral analysis of graphs, Theoretical and Mathematical Physics, Springer, Berlin, 2007. With a foreword by Luigi Accardi. MR 2316893 hos Hosten, S. and Meek, C. (2006). Preface. J. Symb. Comput., 41(2):123–124.
- Søren Fiig Jarner and Ernst Hansen, Geometric ergodicity of Metropolis algorithms, Stochastic Process. Appl. 85 (2000), no. 2, 341–361. MR 1731030, DOI 10.1016/S0304-4149(99)00082-4 jas Jaster, A. (2004). The hexatic phase of the two-dimensional hard disks system. Phys. Lett. A, 330(cond-mat/0305239):120–125.
- Mark Jerrum, Alistair Sinclair, and Eric Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries, J. ACM 51 (2004), no. 4, 671–697. MR 2147852, DOI 10.1145/1008731.1008738
- Galin L. Jones and James P. Hobert, Honest exploration of intractable probability distributions via Markov chain Monte Carlo, Statist. Sci. 16 (2001), no. 4, 312–334. MR 1888447, DOI 10.1214/ss/1015346317
- Ravi Kannan, Michael W. Mahoney, and Ravi Montenegro, Rapid mixing of several Markov chains for a hard-core model, Algorithms and computation, Lecture Notes in Comput. Sci., vol. 2906, Springer, Berlin, 2003, pp. 663–675. MR 2088246, DOI 10.1007/978-3-540-24587-2_{6}8
- Wilfrid S. Kendall, Geometric ergodicity and perfect simulation, Electron. Comm. Probab. 9 (2004), 140–151. MR 2108860, DOI 10.1214/ECP.v9-1117
- I. Kontoyiannis and S. P. Meyn, Spectral theory and limit theorems for geometrically ergodic Markov processes, Ann. Appl. Probab. 13 (2003), no. 1, 304–362. MR 1952001, DOI 10.1214/aoap/1042765670
- Werner Krauth, Statistical mechanics, Oxford Master Series in Physics, vol. 13, Oxford University Press, Oxford, 2006. Algorithms and computations; Oxford Master Series in Statistical Computational, and Theoretical Physics. MR 2370557
- David P. Landau and Kurt Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press, Cambridge, 2000. MR 1781083 leb Lebeau, G. and Michel, L. (2008). Semiclassical analysis of a random walk on a manifold. Ann. Probab., to appear (arXiv:0802.0644).
- Thomas M. Liggett, Interacting particle systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR 776231, DOI 10.1007/978-1-4613-8542-4
- Torgny Lindvall, Lectures on the coupling method, Dover Publications, Inc., Mineola, NY, 2002. Corrected reprint of the 1992 original. MR 1924231
- Jun S. Liu, Monte Carlo strategies in scientific computing, Springer Series in Statistics, Springer-Verlag, New York, 2001. MR 1842342
- László Lovász and Santosh Vempala, Hit-and-run from a corner, SIAM J. Comput. 35 (2006), no. 4, 985–1005. MR 2203735, DOI 10.1137/S009753970544727X
- Hartmut Löwen, Fun with hard spheres, Statistical physics and spatial statistics (Wuppertal, 1999) Lecture Notes in Phys., vol. 554, Springer, Berlin, 2000, pp. 295–331. MR 1870950, DOI 10.1007/3-540-45043-2_{1}1
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 mack Mackenzie, P. (2005). The fundamental constants of nature from lattice gauge theory simulations. J. Phys. Conf. Ser., 16(doi:10.1088/1742-6596/16/1/018):140–149.
- Fabio Martinelli, Relaxation times of Markov chains in statistical mechanics and combinatorial structures, Probability on discrete structures, Encyclopaedia Math. Sci., vol. 110, Springer, Berlin, 2004, pp. 175–262. MR 2023653, DOI 10.1007/978-3-662-09444-0_{4}
- S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR 1287609, DOI 10.1007/978-1-4471-3267-7
- Ravi Montenegro and Prasad Tetali, Mathematical aspects of mixing times in Markov chains, Found. Trends Theor. Comput. Sci. 1 (2006), no. 3, x+121. MR 2341319, DOI 10.1561/0400000003
- Ben Morris and Alistair Sinclair, Random walks on truncated cubes and sampling 0-1 knapsack solutions, SIAM J. Comput. 34 (2004), no. 1, 195–226. MR 2114310, DOI 10.1137/S0097539702411915 nee Neel, R. W. (2008). A martingale approach to minimal surfaces. J. Funct. Anal., (doi:10.1016/j.jfa.2008.06.033). arXiv:0805.0556v2 [math.DG] (in press).
- M. E. J. Newman and G. T. Barkema, Monte Carlo methods in statistical physics, The Clarendon Press, Oxford University Press, New York, 1999. MR 1691513 oll Ollivier, Y. (2008). Ricci curvature of Markov chains on metric spaces. Preprint, submitted, 2008.
- Lior Pachter and Bernd Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge University Press, New York, 2005. MR 2205865, DOI 10.1017/CBO9780511610684
- Igor Pak, What do we know about the product replacement algorithm?, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 301–347. MR 1829489
- Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, Algebraic statistics, Monographs on Statistics and Applied Probability, vol. 89, Chapman & Hall/CRC, Boca Raton, FL, 2001. Computational commutative algebra in statistics. MR 2332740
- James Gary Propp and David Bruce Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), 1996, pp. 223–252. MR 1611693, DOI 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.3.CO;2-R ros Ross, S. M. (2002). A First Course in Probability, 7th Edition. Cambridge University Press, Cambridge.
- Laurent Saloff-Coste, Lectures on finite Markov chains, Lectures on probability theory and statistics (Saint-Flour, 1996) Lecture Notes in Math., vol. 1665, Springer, Berlin, 1997, pp. 301–413. MR 1490046, DOI 10.1007/BFb0092621
- Ákos Seress, Permutation group algorithms, Cambridge Tracts in Mathematics, vol. 152, Cambridge University Press, Cambridge, 2003. MR 1970241, DOI 10.1017/CBO9780511546549
- Alistair Sinclair, Algorithms for random generation and counting, Progress in Theoretical Computer Science, Birkhäuser Boston, Inc., Boston, MA, 1993. A Markov chain approach. MR 1201590, DOI 10.1007/978-1-4612-0323-0 sta99 Stanley, R. P. (1999). Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
- Howard M. Taylor and Samuel Karlin, An introduction to stochastic modeling, Academic Press, Inc., Orlando, FL, 1984. MR 778728 thimar Thiem, N. and Marberg, E. (2008). Superinduction for pattern groups. Technical report, Department of Mathematics, University of Colorado, Boulder. thiven Thiem, N. and Venkateswaran, V. (2008). Restricting supercharacters of the finite group of unipotent uppertriangular matrices. Technical report, Department of Mathematics, University of Colorado, Boulder.
- Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications (New York), Springer-Verlag, New York, 2000. MR 1741181, DOI 10.1007/978-1-4612-1236-2 uhl Uhlenbeck, G. E. (1968). An outline of statistical mechanics. In Cohen, E. G. D., editor, Fundamental Problems in Statistical Mechanics, volume 2, pages 1–19. North-Holland Publishing Co., Amsterdam.
- Tung Tsang, Statistical mechanics, Rinton Press, Incorporated, Princeton, NJ, 2002. MR 1921032
- Horng-Tzer Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Related Fields 109 (1997), no. 4, 507–538. MR 1483598, DOI 10.1007/s004400050140
Additional Information
- Persi Diaconis
- Affiliation: Department of Mathematics and Statistics, Stanford University, Stanford, California
- MR Author ID: 57595
- Received by editor(s): August 5, 2008
- Published electronically: November 20, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 46 (2009), 179-205
- MSC (2000): Primary 60J20
- DOI: https://doi.org/10.1090/S0273-0979-08-01238-X
- MathSciNet review: 2476411