The geometric nature of the fundamental lemma
Author:
David Nadler
Journal:
Bull. Amer. Math. Soc. 49 (2012), 1-50
MSC (2010):
Primary 11R39, 14D24
DOI:
https://doi.org/10.1090/S0273-0979-2011-01342-8
Published electronically:
July 26, 2011
MathSciNet review:
2869006
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Fundamental Lemma is a somewhat obscure combinatorial identity introduced by Robert P. Langlands in 1979 as an ingredient in the theory of automorphic representations. After many years of deep contributions by mathematicians working in representation theory, number theory, algebraic geometry, and algebraic topology, a proof of the Fundamental Lemma was recently completed by Ngô Bao Châu in 2008, for which he was awarded a Fields Medal. Our aim here is to touch on some of the beautiful ideas contributing to the Fundamental Lemma and its proof. We highlight the geometric nature of the problem which allows one to attack a question in $p$-adic analysis with the tools of algebraic geometry.
- James Arthur, The problem of classifying automorphic representations of classical groups, Advances in mathematical sciences: CRM’s 25 years (Montreal, PQ, 1994) CRM Proc. Lecture Notes, vol. 11, Amer. Math. Soc., Providence, RI, 1997, pp. 1–12. MR 1479667
- James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1–263. MR 2192011
- James Arthur, Report on the trace formula, Automorphic forms and $L$-functions I. Global aspects, Contemp. Math., vol. 488, Amer. Math. Soc., Providence, RI, 2009, pp. 1–12. MR 2522025, DOI https://doi.org/10.1090/conm/488/09562
- D. Ben-Zvi, D. Nadler, The character theory of a complex group, arXiv:0904.1247.
- P.-H. Chaudouard, G. Laumon, Sur l’homologie des fibres de Springer affines tronquées, arXiv:math/0702586.
- P.-H. Chaudouard, G. Laumon, Le lemme fondamental pondéré I : constructions géométriques, arXiv:math/0902.2684.
- P.-H. Chaudouard, G. Laumon, Le lemme fondamental pondéré. II. Énoncés cohomologiques, arXiv:math/0702586.
- R. Cluckers, T. Hales, F. Loeser, Transfer principle for the Fundamental Lemma, arXiv:0712.0708.
- Raf Cluckers and François Loeser, Ax-Kochen-Eršov theorems for $p$-adic integrals and motivic integration, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 109–137. MR 2159379, DOI https://doi.org/10.1007/0-8176-4417-2_5
- Raf Cluckers and François Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math. (2) 171 (2010), no. 2, 1011–1065. MR 2630060, DOI https://doi.org/10.4007/annals.2010.171.1011
- Stephen DeBacker, The fundamental lemma: what is it and what do we know?, Current developments in mathematics, 2005, Int. Press, Somerville, MA, 2007, pp. 151–171. MR 2459300
- Jan Denef and François Loeser, Definable sets, motives and $p$-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, DOI https://doi.org/10.1090/S0894-0347-00-00360-X
- V. Drinfeld, Informal notes available at http://www.math.uchicago.edu/.
- E. Frenkel, R. Langlands, B. C. Ngô, Formule des Traces et Fonctorialité: le Début d’un Programme, arXiv:1003.4578.
- E. Frenkel, B. C. Ngô, Geometrization of trace formulas, arXiv:1004.5323.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- Victor Ginsburg, Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 5, 249–252 (French, with English summary). MR 693785
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI https://doi.org/10.1007/s002220050197
- Mark Goresky, Robert Kottwitz, and Robert Macpherson, Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), no. 3, 509–561. MR 2040285, DOI https://doi.org/10.1215/S0012-7094-04-12135-9
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Purity of equivalued affine Springer fibers, Represent. Theory 10 (2006), 130–146. MR 2209851, DOI https://doi.org/10.1090/S1088-4165-06-00200-7
- Mikhail Grinberg, A generalization of Springer theory using nearby cycles, Represent. Theory 2 (1998), 410–431. MR 1657203, DOI https://doi.org/10.1090/S1088-4165-98-00053-3
- Thomas C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math. 47 (1995), no. 5, 974–994. MR 1350645, DOI https://doi.org/10.4153/CJM-1995-051-5
- Thomas C. Hales, A statement of the fundamental lemma, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 643–658. MR 2192018
- M. Harris et. al., The stable trace formula, Shimura varieties, and arithmetic applications, book project available at http://fa.institut.math.jussieu.fr/node/29.
- M. A. de Cataldo, T. Hausel, L. Migliorini, Topology of Hitchin systems and Hodge theory of character varieties, arXiv:1004.1420.
- Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91–114. MR 885778, DOI https://doi.org/10.1215/S0012-7094-87-05408-1
- R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI https://doi.org/10.1007/BF01388568
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI https://doi.org/10.1007/BF02787119
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI https://doi.org/10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI https://doi.org/10.1007/BF01458611
- R. P. Langlands, Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983 (French). MR 697567
- Robert P. Langlands, Base change for ${\rm GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- R. P. Langlands, Informal remarks available at http://publications.ias.edu/rpl/ series.php?series=54.
- R. P. Langlands, Informal remarks available at http://publications.ias.edu/rpl/ series.php?series=56.
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI https://doi.org/10.1007/BF01458070
- E. Lapid, The relative trace formula and its applications, Automorphic Forms and Automorphic L-Functions (Kyoto, 2005), Surikaisekikenkyusho Kokyuroku No. 1468 (2006), 76-87.
- G. Laumon, The Fundamental Lemma for Unitary Groups, lecture at Clay Math. Inst., available at http://www.claymath.org/research_award/Laumon-Ngo/laumon.pdf.
- G. Laumon, Fundamental Lemma and Hitchin Fibration, lecture at Newton Inst., available at http://www.newton.ac.uk/programmes/ALT/seminars/051316301.pdf.
- Gérard Laumon, Fibres de Springer et jacobiennes compactifiées, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 515–563 (French, with French summary). MR 2263199, DOI https://doi.org/10.1007/978-0-8176-4532-8_9
- G. Laumon, Sur le lemme fondamental pour les groupes unitaires, arXiv:math/0212245.
- G. Laumon and B. C. Ngô, Le lemme fondamental pour les groupes unitaires, arXiv:math/0404454v2.
- S. Morel, Étude de la cohomologie de certaines varietes de Shimura non compactes, arXiv:0802.4451.
- Ngô Báo Châu, Le lemme fondamental de Jacquet et Ye en caractéristique positive, Duke Math. J. 96 (1999), no. 3, 473–520 (French). MR 1671212, DOI https://doi.org/10.1215/S0012-7094-99-09615-1
- Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169 (French). MR 2653248, DOI https://doi.org/10.1007/s10240-010-0026-7
- Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, NJ, 1990. MR 1081540
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
- D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430. MR 661206, DOI https://doi.org/10.1007/BF01456950
- S.-W. Shin, Galois representations arising from some compact Shimura varieties, to appear in Annals of Math.
- J.-L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), no. 4, 852–896 (French). MR 1127034, DOI https://doi.org/10.4153/CJM-1991-049-5
- J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), no. 2, 153–236 (French). MR 1440722, DOI https://doi.org/10.1023/A%3A1000103112268
- J.-L. Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 5 (2006), no. 3, 423–525 (French, with English and French summaries). MR 2241929, DOI https://doi.org/10.1017/S1474748006000041
- J.-L. Waldspurger, L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc. 194 (2008), no. 908, x+261 (French, with English summary). MR 2418405, DOI https://doi.org/10.1090/memo/0908
- J.-L. Waldspurger, À propos du lemme fondamental pondéré tordu, Math. Ann. 343 (2009), no. 1, 103–174 (French, with English summary). MR 2448443, DOI https://doi.org/10.1007/s00208-008-0267-7
- Z. Yun, Towards a Global Springer Theory I: The affine Weyl group action, arXiv:0810.2146.
- Z. Yun, The fundamental lemma of Jacquet-Rallis in positive characteristics, arXiv:0901.0900.
- Z. Yun, Towards a Global Springer Theory II: the double affine action, arXiv:0904.3371.
- Z. Yun, Towards a Global Springer Theory III: Endoscopy and Langlands duality, arXiv:0904.3372.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 11R39, 14D24
Retrieve articles in all journals with MSC (2010): 11R39, 14D24
Additional Information
David Nadler
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2370
MR Author ID:
620327
Email:
nadler@math.northwestern.edu
Received by editor(s):
January 30, 2001
Received by editor(s) in revised form:
April 18, 2011
Published electronically:
July 26, 2011
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.