Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 3119825
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: N. Katz
Title: Convolution and equidistribution: Sato-Tate theorems for finite fields Mellin transforms
Additional book information: Annals of Mathematical Studies, 180, Princeton University Press, Princeton, NJ, 2012, viii+203 pages, ISBN 13: 978-0-691-15331-5, US $75.00, cloth

References [Enhancements On Off] (What's this?)

  • Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
  • Manfred Einsiedler, The ergodic theory of lattice subgroups [book review of MR2573139], Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 3, 475–480. MR 2816388, DOI 10.1090/S0273-0979-2011-01335-0
  • Ofer Gabber and François Loeser, Faisceaux pervers $l$-adiques sur un tore, Duke Math. J. 83 (1996), no. 3, 501–606 (French). MR 1390656, DOI 10.1215/S0012-7094-96-08317-9
  • Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
  • Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
  • Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
  • Nicholas M. Katz, Exponential sums over finite fields and differential equations over the complex numbers: some interactions, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 269–309. MR 1032857, DOI 10.1090/S0273-0979-1990-15922-1
  • Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536, DOI 10.1515/9781400882434
  • Nicholas M. Katz, Moments, monodromy, and perversity: a Diophantine perspective, Annals of Mathematics Studies, vol. 159, Princeton University Press, Princeton, NJ, 2005. MR 2183396
  • Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
  • Pär Kurlberg and Zeév Rudnick, On the distribution of matrix elements for the quantum cat map, Ann. of Math. (2) 161 (2005), no. 1, 489–507. MR 2150390, DOI 10.4007/annals.2005.161.489
  • Pär Kurlberg, Lior Rosenzweig, and Zeév Rudnick, Matrix elements for the quantum cat map: fluctuations in short windows, Nonlinearity 20 (2007), no. 10, 2289–2304. MR 2356110, DOI 10.1088/0951-7715/20/10/001
  • Alexander Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 113–162. MR 2869010, DOI 10.1090/S0273-0979-2011-01359-3
  • Barry Mazur, Finding meaning in error terms, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 2, 185–228. MR 2383303, DOI 10.1090/S0273-0979-08-01207-X
  • Peter Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 441–478. MR 1997348, DOI 10.1090/S0273-0979-03-00991-1
  • J-P. Serre: Inaugural Minerva Lecture, “Equidistribution”, https:www.math.princeton.edu/ events/seminars/minerva-lectures/inaugural-minerva-lectures-i-equidistribution
  • Tamás Szamuely, Galois groups and fundamental groups, Cambridge Studies in Advanced Mathematics, vol. 117, Cambridge University Press, Cambridge, 2009. MR 2548205, DOI 10.1017/CBO9780511627064
  • H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1914).

  • Review Information:

    Reviewer: Emmanuel Kowalski
    Affiliation: ETH Zürich – D-MATH Rämistrasse 101, CH-8092 Zürich, Switzerland
    Email: kowalski@math.ethz.ch
    Journal: Bull. Amer. Math. Soc. 51 (2014), 141-149
    DOI: https://doi.org/10.1090/S0273-0979-2013-01412-5
    Published electronically: June 10, 2013
    Review copyright: © Copyright 2013 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.