Cluster algebras: an introduction
Author:
Lauren K. Williams
Journal:
Bull. Amer. Math. Soc. 51 (2014), 1-26
MSC (2010):
Primary 13F60, 30F60, 82B23, 05E45
DOI:
https://doi.org/10.1090/S0273-0979-2013-01417-4
Published electronically:
June 10, 2013
MathSciNet review:
3119820
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Cluster algebras are commutative rings with a set of distinguished generators having a remarkable combinatorial structure. They were introduced by Fomin and Zelevinsky in 2000 in the context of Lie theory, but have since appeared in many other contexts, from Poisson geometry to triangulations of surfaces and Teichmüller theory. In this expository paper we give an introduction to cluster algebras, and illustrate how this framework naturally arises in Teichmüller theory. We then sketch how the theory of cluster algebras led to a proof of the Zamolodchikov periodicity conjecture in mathematical physics.
- Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590 (English, with English and French summaries). MR 2640929
- Philippe Caldero and Markus Reineke, On the quiver Grassmannian in the acyclic case, J. Pure Appl. Algebra 212 (2008), no. 11, 2369–2380. MR 2440252, DOI https://doi.org/10.1016/j.jpaa.2008.03.025
- Giovanni Cerulli Irelli, Bernhard Keller, Daniel Labardini-Fragoso, and Pierre-Guy Plamondon, Linear independence of cluster monomials for skew-symmetric cluster algebras, ArXiv Mathematics e-prints (2012), arXiv:1203.1307.
- Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), no. 4, 537–566. Dedicated to Robert V. Moody. MR 1941227, DOI https://doi.org/10.4153/CMB-2002-054-1
- Philippe Di Francesco and Rinat Kedem, $Q$-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010), no. 3, 727–802. MR 2566162, DOI https://doi.org/10.1007/s00220-009-0947-5
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. IMRN 8 (2012), 1768–1804. MR 2920830, DOI https://doi.org/10.1093/imrn/rnr072
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1135–1180. MR 2928847, DOI https://doi.org/10.4171/JEMS/329
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI https://doi.org/10.1007/s10240-006-0039-4
- Vladimir V. Fock and Alexander B. Goncharov, Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 647–684. MR 2349682, DOI https://doi.org/10.4171/029-1/16
- Vladimir V. Fock and Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 6, 865–930 (English, with English and French summaries). MR 2567745, DOI https://doi.org/10.24033/asens.2112
- Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146. MR 2448067, DOI https://doi.org/10.1007/s11511-008-0030-7
- Sergey Fomin and Dylan Thurston, Cluster algebras and triangulated surfaces. Part II: lambda lengths, ArXiv Mathematics e-prints (2012), arXiv:1210.5569.
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI https://doi.org/10.1090/S0894-0347-01-00385-X
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121. MR 2004457, DOI https://doi.org/10.1007/s00222-003-0302-y
- Sergey Fomin and Andrei Zelevinsky, $Y$-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977–1018. MR 2031858, DOI https://doi.org/10.4007/annals.2003.158.977
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112–164. MR 2295199, DOI https://doi.org/10.1112/S0010437X06002521
- Edward Frenkel and András Szenes, Thermodynamic Bethe ansatz and dilogarithm identities. I, Math. Res. Lett. 2 (1995), no. 6, 677–693. MR 1362962, DOI https://doi.org/10.4310/MRL.1995.v2.n6.a2
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 825–876 (English, with English and French summaries). MR 2427512
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Preprojective algebras and cluster algebras, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 253–283. MR 2484728, DOI https://doi.org/10.4171/062-1/6
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), no. 2, 291–311. MR 2130414, DOI https://doi.org/10.1215/S0012-7094-04-12723-X
- F. Gliozzi and R. Tateo, Thermodynamic Bethe ansatz and three-fold triangulations, Internat. J. Modern Phys. A 11 (1996), no. 22, 4051–4064. MR 1403679, DOI https://doi.org/10.1142/S0217751X96001905
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI https://doi.org/10.1007/BF01388737
- Allen Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194. MR 1123262, DOI https://doi.org/10.1016/0166-8641%2891%2990050-V
- David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341. MR 2682185, DOI https://doi.org/10.1215/00127094-2010-040
- Rei Inoue, Osama Iyama, Bernhard Keller, Atsuo Kuniba, and Tomoki Nakanishi, Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras I: Type $B_r$., ArXiv Mathematics e-prints (2010), arXiv:1001.1880, to appear in Publ. RIMS.
- ---, Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras II: Types $C_r$, $F_4$, and $G_2$., ArXiv Mathematics e-prints (2010), arXiv:1001.1881, to appear in Publ. RIMS.
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI https://doi.org/10.1007/s00222-007-0096-4
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI https://doi.org/10.1215/S0012-7094-91-06321-0
- Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 76–160. MR 2681708
- Bernhard Keller, The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177 (2013), no. 1, 111–170. MR 2999039, DOI https://doi.org/10.4007/annals.2013.177.1.3
- Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras, and dual canonical basis, ArXiv Mathematics e-prints (2012), arXiv:1205.2066.
- A. Kuniba and T. Nakanishi, Spectra in conformal field theories from the Rogers dilogarithm, Modern Phys. Lett. A 7 (1992), no. 37, 3487–3494. MR 1192727, DOI https://doi.org/10.1142/S0217732392002895
- Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215–5266. MR 1304818, DOI https://doi.org/10.1142/S0217751X94002119
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI https://doi.org/10.1090/S0894-0347-1990-1035415-6
- Robert Marsh, Markus Reineke, and Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171–4186. MR 1990581, DOI https://doi.org/10.1090/S0002-9947-03-03320-8
- Lee Mosher, Tiling the projective foliation space of a punctured surface, Trans. Amer. Math. Soc. 306 (1988), no. 1, 1–70. MR 927683, DOI https://doi.org/10.1090/S0002-9947-1988-0927683-0
- Gregg Musiker, Ralf Schiffler, and Lauren Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), no. 6, 2241–2308. MR 2807089, DOI https://doi.org/10.1016/j.aim.2011.04.018
- Hiraku Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126. MR 2784748, DOI https://doi.org/10.1215/0023608X-2010-021
- R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339. MR 919235
- R. C. Penner, Decorated Teichmüller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 793–820. MR 2104076
- Pierre-Guy Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compos. Math. 147 (2011), no. 6, 1921–1954. MR 2862067, DOI https://doi.org/10.1112/S0010437X11005483
- F. Ravanini, A. Valleriani, and R. Tateo, Dynkin TBAs, Internat. J. Modern Phys. A 8 (1993), no. 10, 1707–1727. MR 1216231, DOI https://doi.org/10.1142/S0217751X93000709
- Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380. MR 2205721, DOI https://doi.org/10.1112/S0024611505015571
- András Szenes, Periodicity of Y-systems and flat connections, Lett. Math. Phys. 89 (2009), no. 3, 217–230. MR 2551180, DOI https://doi.org/10.1007/s11005-009-0332-5
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI https://doi.org/10.1090/S0273-0979-1988-15685-6
- William P. Thurston, The geometry and topology of three-manifolds, Princeton University notes, 1980.
- Alexandre Yu. Volkov, On the periodicity conjecture for $Y$-systems, Comm. Math. Phys. 276 (2007), no. 2, 509–517. MR 2346398, DOI https://doi.org/10.1007/s00220-007-0343-y
- Al. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless $ADE$ scattering theories, Phys. Lett. B 253 (1991), no. 3-4, 391–394. MR 1092210, DOI https://doi.org/10.1016/0370-2693%2891%2991737-G
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 13F60, 30F60, 82B23, 05E45
Retrieve articles in all journals with MSC (2010): 13F60, 30F60, 82B23, 05E45
Additional Information
Lauren K. Williams
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720
MR Author ID:
611667
Email:
williams@math.berkeley.edu
Received by editor(s):
January 14, 2013
Published electronically:
June 10, 2013
Additional Notes:
The author is partially supported by a Sloan Fellowship and an NSF Career award.
Dedicated:
To the memory of Andrei Zelevinsky
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.