Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision
HTML articles powered by AMS MathViewer
- by Mladen Bestvina PDF
- Bull. Amer. Math. Soc. 51 (2014), 53-70 Request permission
Abstract:
In the late 1970s, Thurston revolutionized our understanding of 3-manifolds. He stated a far-reaching geometrization conjecture and proved it for a large class of manifolds, called Haken manifolds. He also posed 24 open problems, describing his vision of the structure of 3-manifolds.
Pieces of Thurston’s vision have been confirmed in the subsequent years. In the meantime, Dani Wise developed a sophisticated program to study cube complexes and, in particular, to promote immersions to embeddings in a finite cover. Ian Agol completed Wise’s program and, as a result, essentially all problems on Thurston’s list are now solved. In these notes I will outline a proof that closed hyperbolic 3-manifolds are virtually Haken.
References
- Ian Agol. Tameness of hyperbolic 3-manifolds. math/0405568.
- Ian Agol. The virtual Haken conjecture, with an appendix by Agol, Groves, and Manning. arXiv:1204.2810.
- Ian Agol, Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284. MR 2399130, DOI 10.1112/jtopol/jtn003
- Ian Agol, Daniel Groves, and Jason Fox Manning, Residual finiteness, QCERF and fillings of hyperbolic groups, Geom. Topol. 13 (2009), no. 2, 1043–1073. MR 2470970, DOI 10.2140/gt.2009.13.1043
- I. R. Aitchison and J. H. Rubinstein, An introduction to polyhedral metrics of nonpositive curvature on $3$-manifolds, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 127–161. MR 1171913
- Nicolas Bergeron and Daniel T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012), no. 3, 843–859. MR 2931226, DOI 10.1353/ajm.2012.0020
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky. The classification of Kleinian surface groups, II: The Ending Lamination Conjecture. math/0412006.
- Marc Burger and Shahar Mozes, Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 7, 747–752 (English, with English and French summaries). MR 1446574, DOI 10.1016/S0764-4442(97)86938-8
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, DOI 10.1090/S0894-0347-05-00513-8
- D. Cooper, D. D. Long, and A. W. Reid, Essential closed surfaces in bounded $3$-manifolds, J. Amer. Math. Soc. 10 (1997), no. 3, 553–563. MR 1431827, DOI 10.1090/S0894-0347-97-00236-1
- Francois Dahmani, Vincent Guirardel, and Denis Osin. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. arXiv:1111.7048.
- Michael W. Davis and Tadeusz Januszkiewicz, Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000), no. 3, 229–235. MR 1783167, DOI 10.1016/S0022-4049(99)00175-9
- Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998), no. 1, 321–329. MR 1389776, DOI 10.1090/S0002-9947-98-01792-9
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. MR 2448064, DOI 10.1007/s11856-008-1070-6
- Frédéric Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209. MR 2413337, DOI 10.1007/s10711-008-9270-0
- Frédéric Haglund and Frédéric Paulin. “Simplicité de groupes d’automorphismes d’espaces à courbure négative,” in The Epstein birthday schrift, vol. 1 of Geom. Topol. Monogr., pp. 181–248 (electronic). Geom. Topol. Publ., Coventry, 1998.
- Frédéric Haglund and Daniel T. Wise, A combination theorem for special cube complexes, Ann. of Math. (2) 176 (2012), no. 3, 1427–1482. MR 2979855, DOI 10.4007/annals.2012.176.3.2
- Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551–1620. MR 2377497, DOI 10.1007/s00039-007-0629-4
- Wolfgang Haken, Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I, Math. Z. 80 (1962), 89–120 (German). MR 160196, DOI 10.1007/BF01162369
- G. Christopher Hruska and Daniel T. Wise. Finiteness properties of cubulated groups. arXiv:1209.1074.
- Tim Hsu and Daniel T. Wise. Cubulating malnormal amalgams. preprint.
- Jeremy Kahn and Vladimir Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190. MR 2912704, DOI 10.4007/annals.2012.175.3.4
- Ian Leary. A metric Kan-Thurston theorem. J. Topol., to appear.
- Jason Fox Manning and Eduardo Martínez-Pedroza, Separation of relatively quasiconvex subgroups, Pacific J. Math. 244 (2010), no. 2, 309–334. MR 2587434, DOI 10.2140/pjm.2010.244.309
- Ashot Minasyan, Some properties of subsets of hyperbolic groups, Comm. Algebra 33 (2005), no. 3, 909–935. MR 2128420, DOI 10.1081/AGB-200051164
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Michah Sageev. ${C}{A}{T}(0)$ cube complexes and groups. PCMI Lecture Notes, to appear.
- Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3) 71 (1995), no. 3, 585–617. MR 1347406, DOI 10.1112/plms/s3-71.3.585
- Michah Sageev, Codimension-$1$ subgroups and splittings of groups, J. Algebra 189 (1997), no. 2, 377–389. MR 1438181, DOI 10.1006/jabr.1996.6884
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551–565. MR 695906, DOI 10.1007/BF02095993
- Ralph Strebel, Appendix. Small cancellation groups, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 227–273. MR 1086661
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Daniel T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, vol. 117, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. MR 2986461, DOI 10.1090/cbms/117
- Daniel T. Wise, Complete square complexes, Comment. Math. Helv. 82 (2007), no. 4, 683–724. MR 2341837, DOI 10.4171/CMH/107
Additional Information
- Mladen Bestvina
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, UT 84103
- MR Author ID: 36095
- Received by editor(s): May 22, 2013
- Published electronically: September 30, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 51 (2014), 53-70
- MSC (2010): Primary 57M50, 57N10
- DOI: https://doi.org/10.1090/S0273-0979-2013-01434-4
- MathSciNet review: 3119822
Dedicated: Dedicated to Bill Thurston (1946–2012), who taught us how to think about mathematics