Tate’s work and the Serre–Tate correspondence
HTML articles powered by AMS MathViewer
- by Pierre Colmez PDF
- Bull. Amer. Math. Soc. 54 (2017), 559-573 Request permission
Abstract:
The Serre–Tate correspondence contains a lot of Tate’s work in a casual form. We present some excerpts that show how some of Tate’s best known contributions came into being.References
- T. Barnet-Lamb, T. Gee, and D. Geraghty, The Sato–Tate conjecture for Hilbert modular forms, Jour. Amer. Math. Soc. 24 (2011), 411–469. MR2748398
- T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), 29–98. MR2827723
- P. Colmez and J.-P. Serre, editors, Correspondance Grothendieck–Serre (French). Documents Mathématiques (Paris), 2. Société Mathématique de France, Paris, 2001. MR1942134
- P. Colmez and J.-P. Serre, editors, Correspondance Serre–Tate. Vol. I (French). Documents Mathématiques (Paris), 13. Société Mathématique de France, Paris, 2015. MR3379329
- P. Colmez and J.-P. Serre, editors, Correspondance Serre–Tate. Vol. II (French). Documents Mathématiques (Paris), 14. Société Mathématique de France, Paris, 2015. MR3379330
- C. Khare and J.-P. Wintenberger, Jean-Pierre Serre’s modularity conjecture, Invent. Math. 178 (2009), 485-504 and 505–586. MR2551763; MR 2551764
Additional Information
- Pierre Colmez
- Affiliation: CNRS, IMJ-PRG, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
- MR Author ID: 50720
- Email: pierre.colmez@imj-prg.fr
- Received by editor(s): March 25, 2017
- Published electronically: April 13, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 54 (2017), 559-573
- MSC (2010): Primary 01Axx, 10-03
- DOI: https://doi.org/10.1090/bull/1576
- MathSciNet review: 3683624