Current trends and open problems in arithmetic dynamics
HTML articles powered by AMS MathViewer
- by Robert Benedetto, Patrick Ingram, Rafe Jones, Michelle Manes, Joseph H. Silverman and Thomas J. Tucker PDF
- Bull. Amer. Math. Soc. 56 (2019), 611-685 Request permission
Abstract:
Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geometry and partly from $p$-adic analogues of theorems and conjectures in classical complex dynamics. In this article we survey some of the motivating problems and some of the recent progress in the field of arithmetic dynamics.References
- Amir Akbary and Dragos Ghioca, Periods of orbits modulo primes, J. Number Theory 129 (2009), no. 11, 2831–2842. MR 2549537, DOI 10.1016/j.jnt.2009.03.007
- E. Amerik, F. Bogomolov, and M. Rovinsky, Remarks on endomorphisms and rational points, Compos. Math. 147 (2011), no. 6, 1819–1842. MR 2862064, DOI 10.1112/S0010437X11005537
- Ekaterina Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett. 18 (2011), no. 2, 251–256. MR 2784670, DOI 10.4310/MRL.2011.v18.n2.a5
- Ekaterina Amerik, Pär Kurlberg, Khoa D. Nguyen, Adam Towsley, Bianca Viray, and José Felipe Voloch, Evidence for the dynamical Brauer-Manin criterion, Exp. Math. 25 (2016), no. 1, 54–65. MR 3424832, DOI 10.1080/10586458.2015.1056889
- V. I. Arnol′d, Dynamics of complexity of intersections, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), no. 1, 1–10. MR 1139553, DOI 10.1007/BF01236277
- D. K. Arrowsmith and F. Vivaldi, Some $p$-adic representations of the Smale horseshoe, Phys. Lett. A 176 (1993), no. 5, 292–294. MR 1218804, DOI 10.1016/0375-9601(93)90920-U
- David K. Arrowsmith and Franco Vivaldi, Geometry of $p$-adic Siegel discs, Phys. D 71 (1994), no. 1-2, 222–236. MR 1264116, DOI 10.1016/0167-2789(94)90191-0
- Matthew Baker and Laura De Marco, Special curves and postcritically finite polynomials, Forum Math. Pi 1 (2013), e3, 35. MR 3141413, DOI 10.1017/fmp.2013.2
- Matthew Baker and Laura DeMarco, Preperiodic points and unlikely intersections, Duke Math. J. 159 (2011), no. 1, 1–29. MR 2817647, DOI 10.1215/00127094-1384773
- Matthew H. Baker and Robert Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 625–688 (English, with English and French summaries). MR 2244226, DOI 10.5802/aif.2196
- Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159, American Mathematical Society, Providence, RI, 2010. MR 2599526, DOI 10.1090/surv/159
- Stefan Barańczuk, On a dynamical local-global principle in Mordell-Weil type groups, Expo. Math. 35 (2017), no. 2, 206–211. MR 3654074, DOI 10.1016/j.exmath.2016.07.001
- Boris Bartolome, Yuri Bilu, and Florian Luca, On the exponential local-global principle, Acta Arith. 159 (2013), no. 2, 101–111. MR 3062909, DOI 10.4064/aa159-2-1
- Eric Bedford and Kyounghee Kim, Linear recurrences in the degree sequences of monomial mappings, Ergodic Theory Dynam. Systems 28 (2008), no. 5, 1369–1375. MR 2449533, DOI 10.1017/S0143385708000242
- J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math. 132 (2010), no. 6, 1655–1675. MR 2766180
- J. P. Bell, D. Ghioca, and T. J. Tucker, Applications of $p$-adic analysis to Burnside’s problem and Zhang’s conjecture, arXiv:1310.5775 (2013).
- Jason P. Bell, A generalised Skolem-Mahler-Lech theorem for affine varieties, J. London Math. Soc. (2) 73 (2006), no. 2, 367–379. MR 2225492, DOI 10.1112/S002461070602268X
- Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker, The dynamical Mordell-Lang conjecture, Mathematical Surveys and Monographs, vol. 210, American Mathematical Society, Providence, RI, 2016. MR 3468757, DOI 10.1090/surv/210
- Elisa Bellah, Derek Garton, Erin Tannenbaum, and Noah Walton, A probabilistic heuristic for counting components of functional graphs of polynomials over finite fields, Involve 11 (2018), no. 1, 169–179. MR 3681355, DOI 10.2140/involve.2018.11.169
- M. P. Bellon and C.-M. Viallet, Algebraic entropy, Comm. Math. Phys. 204 (1999), no. 2, 425–437. MR 1704282, DOI 10.1007/s002200050652
- Shahar Ben-Menahem, $p$-adic iterations, TAUP 1627–88, Tel-Aviv University, preprint (1988).
- Robert Benedetto, Patrick Ingram, Rafe Jones, and Alon Levy, Attracting cycles in $p$-adic dynamics and height bounds for postcritically finite maps, Duke Math. J. 163 (2014), no. 13, 2325–2356. MR 3265554, DOI 10.1215/00127094-2804674
- Robert Benedetto and Jamie Juul, Odoni’s conjecture for number fields, arXiv:1803.01987 (2018).
- Robert L. Benedetto, Fatou components inp-adic dynamics, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–Brown University. MR 2697379
- Robert L. Benedetto, $p$-adic dynamics and Sullivan’s no wandering domains theorem, Compositio Math. 122 (2000), no. 3, 281–298. MR 1781331, DOI 10.1023/A:1002067315057
- Robert L. Benedetto, Hyperbolic maps in $p$-adic dynamics, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 1–11. MR 1826658, DOI 10.1017/S0143385701001043
- Robert L. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001), no. 2, 175–195. MR 1813109, DOI 10.1006/jnth.2000.2577
- Robert L. Benedetto, Examples of wandering domains in $p$-adic polynomial dynamics, C. R. Math. Acad. Sci. Paris 335 (2002), no. 7, 615–620 (English, with English and French summaries). MR 1941304, DOI 10.1016/S1631-073X(02)02531-1
- Robert L. Benedetto, Wandering domains and nontrivial reduction in non-Archimedean dynamics, Illinois J. Math. 49 (2005), no. 1, 167–193. MR 2157374
- Robert L. Benedetto, Wandering domains in non-Archimedean polynomial dynamics, Bull. London Math. Soc. 38 (2006), no. 6, 937–950. MR 2285248, DOI 10.1112/S0024609306019126
- Robert L. Benedetto, Preperiodic points of polynomials over global fields, J. Reine Angew. Math. 608 (2007), 123–153. MR 2339471, DOI 10.1515/CRELLE.2007.055
- Robert L. Benedetto, A criterion for potentially good reduction in nonarchimedean dynamics, Acta Arith. 165 (2014), no. 3, 251–256. MR 3263950, DOI 10.4064/aa165-3-4
- Robert L. Benedetto, Dynamics in one non-archimedean variable, Graduate Studies in Mathematics, vol. 198, American Mathematical Society, Providence, RI, 2019.
- Robert L. Benedetto, Ruqian Chen, Trevor Hyde, Yordanka Kovacheva, and Colin White, Small dynamical heights for quadratic polynomials and rational functions, Exp. Math. 23 (2014), no. 4, 433–447. MR 3277939, DOI 10.1080/10586458.2014.938203
- Robert L. Benedetto, Benjamin Dickman, Sasha Joseph, Benjamin Krause, Daniel Rubin, and Xinwen Zhou, Computing points of small height for cubic polynomials, Involve 2 (2009), no. 1, 37–64. MR 2501344, DOI 10.2140/involve.2009.2.37
- Robert L. Benedetto, Dragos Ghioca, Pär Kurlberg, and Thomas J. Tucker, A case of the dynamical Mordell-Lang conjecture, Math. Ann. 352 (2012), no. 1, 1–26. With an appendix by Umberto Zannier. MR 2885573, DOI 10.1007/s00208-010-0621-4
- Jean-Paul Bézivin, Sur les points périodiques des applications rationnelles en dynamique ultramétrique, Acta Arith. 100 (2001), no. 1, 63–74 (French). MR 1864626, DOI 10.4064/aa100-1-5
- Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122. With an appendix by M. Mignotte. MR 1863855, DOI 10.1515/crll.2001.080
- Jérémy Blanc, Jung Kyu Canci, and Noam D. Elkies, Moduli spaces of quadratic rational maps with a marked periodic point of small order, Int. Math. Res. Not. IMRN 23 (2015), 12459–12489. MR 3431627, DOI 10.1093/imrn/rnv063
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Degree growth of meromorphic surface maps, Duke Math. J. 141 (2008), no. 3, 519–538. MR 2387430, DOI 10.1215/00127094-2007-004
- T. Bousch, Sur quelques problèmes de dynamique holomorphe. PhD thesis, Université de Paris-Sud, Centre d’Orsay, 1992.
- Nils Bruin and Alexander Molnar, Minimal models for rational functions in a dynamical setting, LMS J. Comput. Math. 15 (2012), 400–417. MR 3015733, DOI 10.1112/S1461157012001131
- Xavier Buff, On postcritically finite unicritical polynomials, https://www.math.univ-toulouse.fr/~buff/Preprints/Gleason/Gleason.pdf (2017).
- Xavier Buff, A.L. Epstein, and Sarah Koch, Irreducibility and postcritically finite unicritical polynomials, arXiv.1806.11221 (2018).
- Jordan Cahn, Rafe Jones, and Jacob Spear, Powers in orbits of rational functions: cases of an arithmetic dynamical Mordell–Lang conjecture, arXiv:1512.03085 (2015).
- Gregory S. Call and Joseph H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163–205. MR 1255693
- Jung Kyu Canci and Laura Paladino, Preperiodic points for rational functions defined over a global field in terms of good reduction, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5141–5158. MR 3556260, DOI 10.1090/proc/13096
- Serge Cantat and Junyi Xie, On degrees of birational mappings, arXiv:1802.08470 (2018).
- R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 30–48. MR 1502458, DOI 10.2307/1967797
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI 10.1515/CRELLE.2006.049
- Mei-Chu Chang, Carlos D’Andrea, Alina Ostafe, Igor E. Shparlinski, and Martín Sombra, Orbits of polynomial dynamical systems modulo primes, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2015–2025. MR 3767353, DOI 10.1090/proc/13904
- João Alberto de Faria and Benjamin Hutz, Automorphism groups and invariant theory on $\Bbb {P}^N$, J. Algebra Appl. 17 (2018), no. 9, 1850162, 38. MR 3846410, DOI 10.1142/S0219498818501621
- Laura DeMarco, Bifurcations, intersections, and heights, Algebra Number Theory 10 (2016), no. 5, 1031–1056. MR 3531361, DOI 10.2140/ant.2016.10.1031
- Laura DeMarco and Dragos Ghioca, Rationality of dynamical canonical height (to appear in Ergodic Theory Dynam. Systems), arXiv:1602.05614 (2018).
- David DeMark, Wade Hindes, Rafe Jones, Moses Misplon, and Michael Stoneman, Eventually stable quadratic polynomials over $\mathbb {Q}$, arXiv:1902.09220 (2019).
- Laurent Denis, Géométrie et suites récurrentes, Bull. Soc. Math. France 122 (1994), no. 1, 13–27 (French, with English and French summaries). MR 1259107, DOI 10.24033/bsmf.2221
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391–401. MR 543210, DOI 10.4064/aa-34-4-391-401
- John R. Doyle, Dynamical modular curves for quadratic polynomial maps (to appear Trans. Amer. Math. Soc.), https://doi.org/10.1090/tran/7474 (2018).
- John R. Doyle, Holly Krieger, Andrew Obus, Rachel Pries, Simon Rubinstein-Salzedo, and Lloyd W. West, Reduction of dynatomic curves (to appear Ergodic Theory Dynam. Systems), https://doi.org/10.1017/etds.2017.140 (2018).
- John R. Doyle and Bjorn Poonen, Gonality of dynatomic curves and strong uniform boundedness of preperiodic points, arXiv:1711.04233 (2017).
- John R. Doyle and Joseph H. Silverman, Moduli spaces for dynamcial systems with portraits, arXiv:1812.09936 2018.
- John R. Doyle and Joseph H. Silverman, A uniform field-of-definition/field-of-moduli bound for dynamical systems on $\Bbb {P}^N$, J. Number Theory 195 (2019), 1–22. MR 3867431, DOI 10.1016/j.jnt.2018.08.011
- Xander Faber and Andrew Granville, Prime factors of dynamical sequences, J. Reine Angew. Math. 661 (2011), 189–214. MR 2863906, DOI 10.1515/CRELLE.2011.081
- Najmuddin Fakhruddin, Boundedness results for periodic points on algebraic varieties, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 2, 173–178. MR 1836365, DOI 10.1007/BF02829589
- Najmuddin Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), no. 2, 109–122. MR 1995861
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- Gerd Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 175–182. MR 1307396
- Charles Favre and Thomas Gauthier, Classification of special curves in the space of cubic polynomials, Int. Math. Res. Not. IMRN 2 (2018), 362–411. MR 3801434, DOI 10.1093/imrn/rnw245
- Charles Favre and Mattias Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 2, 309–349 (English, with English and French summaries). MR 2339287, DOI 10.1016/j.ansens.2007.01.002
- Charles Favre and Mattias Jonsson, Dynamical compactifications of $\textbf {C}^2$, Ann. of Math. (2) 173 (2011), no. 1, 211–248. MR 2753603, DOI 10.4007/annals.2011.173.1.6
- Charles Favre and Juan Rivera-Letelier, Théorème d’équidistribution de Brolin en dynamique $p$-adique, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 271–276 (French, with English and French summaries). MR 2092012, DOI 10.1016/j.crma.2004.06.023
- Charles Favre and Juan Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., 335 (2006), 311–361; Corrigendum, Math. Ann. 339 (2007), 799–801.
- Charles Favre and Juan Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 116–154 (French, with English and French summaries). MR 2578470, DOI 10.1112/plms/pdp022
- Charles Favre and Elizabeth Wulcan, Degree growth of monomial maps and McMullen’s polytope algebra, Indiana Univ. Math. J. 61 (2012), no. 2, 493–524. MR 3043585, DOI 10.1512/iumj.2012.61.4555
- Andrea Ferraguti, The set of stable primes for polynomial sequences with large Galois group, Proc. Amer. Math. Soc. 146 (2018), no. 7, 2773–2784. MR 3787342, DOI 10.1090/proc/13958
- Andrea Ferraguti, Giacomo Micheli, and Reto Schnyder, On sets of irreducible polynomials closed by composition, Arithmetic of finite fields, Lecture Notes in Comput. Sci., vol. 10064, Springer, Cham, 2016, pp. 77–83. MR 3649090, DOI 10.1007/978-3-319-55227-9_{6}
- Andrea Ferraguti, Giacomo Micheli, and Reto Schnyder, Irreducible compositions of degree two polynomials over finite fields have regular structure, Q. J. Math. 69 (2018), no. 3, 1089–1099. MR 3859225, DOI 10.1093/qmath/hay015
- Philippe Flajolet and Andrew M. Odlyzko, Random mapping statistics, Advances in cryptology—EUROCRYPT ’89 (Houthalen, 1989) Lecture Notes in Comput. Sci., vol. 434, Springer, Berlin, 1990, pp. 329–354. MR 1083961, DOI 10.1007/3-540-46885-4_{3}4
- E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-$2$ curve, Duke Math. J. 90 (1997), no. 3, 435–463. MR 1480542, DOI 10.1215/S0012-7094-97-09011-6
- Ryan Flynn and Derek Garton, Graph components and dynamics over finite fields, Int. J. Number Theory 10 (2014), no. 3, 779–792. MR 3190008, DOI 10.1142/S1793042113501224
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 5, 201–231. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992). MR 1285389
- Thomas Gauthier, Yusuke Okuyama, and Gabriel Vigny, Approximation of non-archimedean Lyapunov exponents and applications over global fields, arXiv:1803.06859 (2018).
- D. Ghioca and T. J. Tucker, A dynamical version of the Mordell-Lang conjecture for the additive group, Compos. Math. 144 (2008), no. 2, 304–316. MR 2406114, DOI 10.1112/S0010437X07003260
- D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell-Lang problem, J. Number Theory 129 (2009), no. 6, 1392–1403. MR 2521481, DOI 10.1016/j.jnt.2008.09.014
- Dragos Ghioca, The dynamical Mordell-Lang conjecture, CMS Notes 46 (2014), no. 3, 14–15. MR 3235993
- Dragos Ghioca, The dynamical Mordell-Lang conjecture in positive characteristic, Trans. Amer. Math. Soc. 371 (2019), no. 2, 1151–1167. MR 3885174, DOI 10.1090/tran/7261
- Dragos Ghioca, Liang-Chung Hsia, and Thomas J. Tucker, Preperiodic points for families of polynomials, Algebra Number Theory 7 (2013), no. 3, 701–732. MR 3095224, DOI 10.2140/ant.2013.7.701
- Dragos Ghioca, Holly Krieger, and Khoa Nguyen, A case of the dynamical André-Oort conjecture, Int. Math. Res. Not. IMRN 3 (2016), 738–758. MR 3493432, DOI 10.1093/imrn/rnv143
- Dragos Ghioca, Khoa Nguyen, and Hexi Ye, The dynamical Manin–Mumford conjecture and the dynamical Bogomolov conjecture for split rational maps, arXiv:1511.06081 (2015),
- Dragos Ghioca, Khoa D. Nguyen, and Hexi Ye, The dynamical Manin-Mumford conjecture and the dynamical Bogomolov conjecture for endomorphisms of $(\Bbb P^1)^n$, Compos. Math. 154 (2018), no. 7, 1441–1472. MR 3826461, DOI 10.1112/s0010437x18007157
- Dragos Ghioca, Thomas Tucker, and Michael E. Zieve, The Mordell-Lang question for endomorphisms of semiabelian varieties, J. Théor. Nombres Bordeaux 23 (2011), no. 3, 645–666 (English, with English and French summaries). MR 2861079, DOI 10.5802/jtnb.781
- Dragos Ghioca, Thomas J. Tucker, and Shouwu Zhang, Towards a dynamical Manin-Mumford conjecture, Int. Math. Res. Not. IMRN 22 (2011), 5109–5122. MR 2854724, DOI 10.1093/imrn/rnq283
- Dragos Ghioca, Thomas J. Tucker, and Michael E. Zieve, Intersections of polynomials orbits, and a dynamical Mordell-Lang conjecture, Invent. Math. 171 (2008), no. 2, 463–483. MR 2367026, DOI 10.1007/s00222-007-0087-5
- Dragos Ghioca and Hexi Ye, A dynamical variant of the André-Oort conjecture, Int. Math. Res. Not. IMRN 8 (2018), 2447–2480. MR 3801489, DOI 10.1093/imrn/rnw314
- Vefa Goksel, On the orbit of a post-critically finite polynomial of the form $x^d+c$, arXiv:1806.01208 (2018).
- Vefa Goksel, Shixiang Xia, and Nigel Boston, A refined conjecture for factorizations of iterates of quadratic polynomials over finite fields, Exp. Math. 24 (2015), no. 3, 304–311. MR 3359218, DOI 10.1080/10586458.2014.992079
- Domingo Gomez and Alejandro P. Nicolás, An estimate on the number of stable quadratic polynomials, Finite Fields Appl. 16 (2010), no. 6, 401–405. MR 2727344, DOI 10.1016/j.ffa.2010.06.005
- Domingo Gómez-Pérez, Alina Ostafe, and Igor E. Shparlinski, On irreducible divisors of iterated polynomials, Rev. Mat. Iberoam. 30 (2014), no. 4, 1123–1134. MR 3293428, DOI 10.4171/RMI/809
- Richard Gottesman and Kwokfung Tang, Quadratic recurrences with a positive density of prime divisors, Int. J. Number Theory 6 (2010), no. 5, 1027–1045. MR 2679455, DOI 10.1142/S1793042110003368
- C. Gratton, K. Nguyen, and T. J. Tucker, $ABC$ implies primitive prime divisors in arithmetic dynamics, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1194–1208. MR 3138487, DOI 10.1112/blms/bdt049
- Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389, DOI 10.4007/annals.2005.161.1589
- Spencer Hamblen, Rafe Jones, and Kalyani Madhu, The density of primes in orbits of $z^d+c$, Int. Math. Res. Not. IMRN 7 (2015), 1924–1958. MR 3335237, DOI 10.1093/imrn/rnt349
- Bernard Harris, Probability distributions related to random mappings, Ann. Math. Statist. 31 (1960), 1045–1062. MR 119227, DOI 10.1214/aoms/1177705677
- Boris Hasselblatt and James Propp, Degree-growth of monomial maps, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1375–1397. MR 2358970, DOI 10.1017/S0143385707000168
- D. R. Heath-Brown, Iteration of quadratic polynomials over finite fields, Mathematika 63 (2017), no. 3, 1041–1059. MR 3731313, DOI 10.1112/S0025579317000328
- D.R. Heath-Brown and Giacomo Micheli, Irreducible polynomials over finite fields produced by composition of quadratics, arXiv:1701.05031 (2017).
- M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 408–447. MR 730280, DOI 10.1007/BFb0061427
- Rubén A. Hidalgo, A simple remark on the field of moduli of rational maps, Q. J. Math. 65 (2014), no. 2, 627–635. MR 3230378, DOI 10.1093/qmath/hat012
- Wade Hindes and Rafe Jones, Riccati equations and polynomial dynamics over function fields, arXiv:1710.04332 (2017).
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- Liang-Chung Hsia, Closure of periodic points over a non-Archimedean field, J. London Math. Soc. (2) 62 (2000), no. 3, 685–700. MR 1794277, DOI 10.1112/S0024610700001447
- Liang-Chung Hsia and Joseph Silverman, On a dynamical Brauer-Manin obstruction, J. Théor. Nombres Bordeaux 21 (2009), no. 1, 235–250 (English, with English and French summaries). MR 2537714, DOI 10.5802/jtnb.668
- Benjamin Hutz, Good reduction of periodic points on projective varieties, Illinois J. Math. 53 (2009), no. 4, 1109–1126. MR 2741181
- Benjamin Hutz, Dynatomic cycles for morphisms of projective varieties, New York J. Math. 16 (2010), 125–159. MR 2657371
- Benjamin Hutz, Effectivity of dynatomic cycles for morphisms of projective varieties using deformation theory, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3507–3514. MR 2929019, DOI 10.1090/S0002-9939-2012-11192-X
- Patrick Ingram, Lower bounds on the canonical height associated to the morphism $\phi (z)=z^d+c$, Monatsh. Math. 157 (2009), no. 1, 69–89. MR 2504779, DOI 10.1007/s00605-008-0018-6
- Patrick Ingram, Variation of the canonical height for a family of polynomials, J. Reine Angew. Math. 685 (2013), 73–97. MR 3181564, DOI 10.1515/crelle-2012-0017
- Patrick Ingram, Variation of the canonical height for polynomials in several variables, Int. Math. Res. Not. IMRN 24 (2015), 13545–13562. MR 3436155, DOI 10.1093/imrn/rnv121
- Patrick Ingram, The critical height is a moduli height, Duke Math. J. 167 (2018), no. 7, 1311–1346. MR 3799700, DOI 10.1215/00127094-2017-0053
- Patrick Ingram and Joseph H. Silverman, Primitive divisors in arithmetic dynamics, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 289–302. MR 2475968, DOI 10.1017/S0305004108001795
- Rafe Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 523–544. MR 2439638, DOI 10.1112/jlms/jdn034
- Rafe Jones, An iterative construction of irreducible polynomials reducible modulo every prime, J. Algebra 369 (2012), 114–128. MR 2959789, DOI 10.1016/j.jalgebra.2012.05.020
- Rafe Jones, Galois representations from pre-image trees: an arboreal survey, Actes de la Conférence “Théorie des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2013, Presses Univ. Franche-Comté, Besançon, 2013, pp. 107–136 (English, with English and French summaries). MR 3220023
- Rafe Jones and Nigel Boston, Settled polynomials over finite fields, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1849–1863. MR 2888174, DOI 10.1090/S0002-9939-2011-11054-2
- Rafe Jones and Alon Levy, Eventually stable rational functions, Int. J. Number Theory 13 (2017), no. 9, 2299–2318. MR 3704363, DOI 10.1142/S1793042117501263
- Rafe Jones and Michelle Manes, Galois theory of quadratic rational functions, Comment. Math. Helv. 89 (2014), no. 1, 173–213. MR 3177912, DOI 10.4171/CMH/316
- Mattias Jonsson and Paul Reschke, On the complex dynamics of birational surface maps defined over number fields, J. Reine Angew. Math. 744 (2018), 275–297. MR 3871447, DOI 10.1515/crelle-2015-0113
- Mattias Jonsson and Elizabeth Wulcan, Canonical heights for plane polynomial maps of small topological degree, Math. Res. Lett. 19 (2012), no. 6, 1207–1217. MR 3091603, DOI 10.4310/MRL.2012.v19.n6.a3
- Jamie Juul, Pär Kurlberg, Kalyani Madhu, and Tom J. Tucker, Wreath products and proportions of periodic points, Int. Math. Res. Not. IMRN 13 (2016), 3944–3969. MR 3544625, DOI 10.1093/imrn/rnv273
- Borys Kadets, Large arboreal Galois representations, arXiv:1802.09074 (2018).
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229. MR 1172689, DOI 10.1007/BF01232025
- Shu Kawaguchi and Joseph H. Silverman, Canonical heights and the arithmetic complexity of morphisms on projective space, Pure Appl. Math. Q. 5 (2009), no. 4, Special Issue: In honor of John Tate., 1201–1217. MR 2560315, DOI 10.4310/PAMQ.2009.v5.n4.a2
- Shu Kawaguchi and Joseph H. Silverman, Examples of dynamical degree equals arithmetic degree, Michigan Math. J. 63 (2014), no. 1, 41–63. MR 3189467, DOI 10.1307/mmj/1395234358
- Shu Kawaguchi and Joseph H. Silverman, Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), no. 7, 5009–5035. MR 3456169, DOI 10.1090/tran/6596
- Shu Kawaguchi and Joseph H. Silverman, On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21–48. MR 3483624, DOI 10.1515/crelle-2014-0020
- Sergei V. Konyagin, Florian Luca, Bernard Mans, Luke Mathieson, Min Sha, and Igor E. Shparlinski, Functional graphs of polynomials over finite fields, J. Combin. Theory Ser. B 116 (2016), 87–122. MR 3425238, DOI 10.1016/j.jctb.2015.07.003
- Holly Krieger, Primitive prime divisors in the critical orbit of $z^d+c$, Int. Math. Res. Not. IMRN 23 (2013), 5498–5525. MR 3142262, DOI 10.1093/imrn/rns213
- David Krumm, A local-global principle in the dynamics of quadratic polynomials, Int. J. Number Theory 12 (2016), no. 8, 2265–2297. MR 3562026, DOI 10.1142/S1793042116501360
- Martin D. Kruskal, The expected number of components under a random mapping function, Amer. Math. Monthly 61 (1954), 392–397. MR 62973, DOI 10.2307/2307900
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817, DOI 10.1007/978-3-662-07010-9
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- E. Lau and D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Technical Report 1994/19, (December 1994).
- Michel Laurent, Minoration de la hauteur de Néron-Tate, Seminar on number theory, Paris 1981–82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 137–151 (French). MR 729165
- Chong Gyu Lee, The numerical equivalence relation for height functions and ampleness and nefness criteria for divisors, Bull. Lond. Math. Soc. 44 (2012), no. 5, 944–960. MR 2975153, DOI 10.1112/blms/bds023
- John Lesieutre and Daniel Litt, Dynamical Mordell–Lang and automorphisms of blow-ups, arXiv:1604.08216 (2016).
- John Lesieutre and Matthew Satriano, Canonical heights on hyper-Kähler varieties and the Kawaguchi–Silverman conjecture, arXiv:1802.07388 (2018).
- John Lesieutre and Matthew Satriano, A rational map with infinitely many points of distinct arithmetic degrees, arXiv:1809.00047 (2018).
- Alon Levy, The space of morphisms on projective space, Acta Arith. 146 (2011), no. 1, 13–31. MR 2741188, DOI 10.4064/aa146-1-2
- Rudolf Lidl and Gary L. Mullen, Unsolved Problems: When Does a Polynomial Over a Finite Field Permute the Elements of the Field?, Amer. Math. Monthly 95 (1988), no. 3, 243–246. MR 1541277, DOI 10.2307/2323626
- Rudolf Lidl and Gary L. Mullen, Unsolved Problems: When Does a Polynomial over a Finite Field Permute the Elements of the Field?, II, Amer. Math. Monthly 100 (1993), no. 1, 71–74. MR 1542258, DOI 10.2307/2324822
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- Jan-Li Lin, Algebraic stability and degree growth of monomial maps, Math. Z. 271 (2012), no. 1-2, 293–311. MR 2917145, DOI 10.1007/s00209-011-0864-0
- Jan-Li Lin, Pulling back cohomology classes and dynamical degrees of monomial maps, Bull. Soc. Math. France 140 (2012), no. 4, 533–549 (2013). MR 3059849, DOI 10.24033/bsmf.2635
- D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 411–419. MR 961739, DOI 10.1017/S0143385700004545
- Nicole R. Looper, Dynamical Galois groups of trinomials and Odoni’s conjecture (to appear Bull. Lond. Math. Soc.), arXiv:1609.03398 (2016).
- Nicole R. Looper, The $abc$-conjecture implies uniform bounds on dynamical Zsigmondy sets, arXiv:1711.01507 (2017).
- Nicole R. Looper, A lower bound on the canonical height for polynomials (to appear Math. Annalen), arXiv:1709.08121 (2017).
- Jonathan Lubin, Non-Archimedean dynamical systems, Compositio Math. 94 (1994), no. 3, 321–346. MR 1310863
- Michelle Manes, $\Bbb Q$-rational cycles for degree-2 rational maps having an automorphism, Proc. Lond. Math. Soc. (3) 96 (2008), no. 3, 669–696. MR 2407816, DOI 10.1112/plms/pdm044
- Michelle Manes, Moduli spaces for families of rational maps on $\Bbb P^1$, J. Number Theory 129 (2009), no. 7, 1623–1663. MR 2524186, DOI 10.1016/j.jnt.2009.02.010
- Michelle Manes and Joseph H. Silverman, A classification of degree $2$ semi-stable rational maps $\mathbb {P}^2\to \mathbb {P}^2$ with large finite dynamical automorphism group (to appear Annales de la Faculte des Sciences de Toulouse), arxiv:1607.05772 (2016).
- Bernard Mans, Min Sha, Igor E. Shparlinski, and Daniel Sutantyo, On functional graphs of quadratic polynomials, Exp. Math. 0 (2017), no. 0, 1–9.
- D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132 (2010), no. 6, 1677–1691. MR 2766181
- D. W. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France 117 (1989), no. 2, 247–265 (English, with French summary). MR 1015810, DOI 10.24033/bsmf.2120
- Yohsuke Matsuzawa, On upper bounds of arithmetic degrees, arXiv:1606.00598 (2016).
- Yohsuke Matsuzawa, Kaoru Sano, and Takahiro Shibata, Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, Algebra Number Theory 12 (2018), no. 7, 1635–1657. MR 3871505, DOI 10.2140/ant.2018.12.1635
- Niki Myrto Mavraki and Hexi Ye, Quasi-adelic measures and equidistribution on $\mathbb {P}^1$, arXiv:1502.04660 (2017).
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- Alice Medvedev and Thomas Scanlon, Polynomial dynamics, arXiv:0901.2352 (2009).
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Nikita Miasnikov, Brian Stout, and Phillip Williams, Automorphism loci for the moduli space of rational maps, Acta Arith. 180 (2017), no. 3, 267–296. MR 3709645, DOI 10.4064/aa8548-6-2017
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482, DOI 10.1080/10586458.1993.10504267
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI 10.4171/011-1/1
- Patrick Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith. 62 (1992), no. 4, 343–372. MR 1199627, DOI 10.4064/aa-62-4-343-372
- Patrick Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319–350. MR 1414593
- Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97–110. MR 1264933, DOI 10.1155/S1073792894000127
- Patrick Morton and Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81–122. MR 1324210, DOI 10.1515/crll.1995.461.81
- D. G. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167–177. MR 34607, DOI 10.2307/1969504
- R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3) 51 (1985), no. 3, 385–414. MR 805714, DOI 10.1112/plms/s3-51.3.385
- R. W. K. Odoni, On the prime divisors of the sequence $w_{n+1}=1+w_1\cdots w_n$, J. London Math. Soc. (2) 32 (1985), no. 1, 1–11. MR 813379, DOI 10.1112/jlms/s2-32.1.1
- R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika 35 (1988), no. 1, 101–113. MR 962740, DOI 10.1112/S002557930000632X
- Reinhard Oselies and Heiner Zieschang, Ergodische Eigenschaften der Automorphismen $p$-adischer Zahlen, Arch. Math. (Basel) 26 (1975), 144–153 (German). MR 369301, DOI 10.1007/BF01229718
- Alina Ostafe and Min Sha, On the quantitative dynamical Mordell-Lang conjecture, J. Number Theory 156 (2015), 161–182. MR 3360335, DOI 10.1016/j.jnt.2015.04.011
- Clayton Petsche, Critically separable rational maps in families, Compos. Math. 148 (2012), no. 6, 1880–1896. MR 2999309, DOI 10.1112/S0010437X12000346
- Clayton Petsche and Brian Stout, On quadratic rational maps with prescribed good reduction, Proc. Amer. Math. Soc. 143 (2015), no. 3, 1145–1158. MR 3293730, DOI 10.1090/S0002-9939-2014-12291-X
- Clayton Petsche, Lucien Szpiro, and Michael Tepper, Isotriviality is equivalent to potential good reduction for endomorphisms of $\Bbb P^N$ over function fields, J. Algebra 322 (2009), no. 9, 3345–3365. MR 2567424, DOI 10.1016/j.jalgebra.2008.11.027
- T. Pezda, Cycles of polynomial mappings in several variables, Manuscripta Math. 83 (1994), no. 3-4, 279–289. MR 1277530, DOI 10.1007/BF02567614
- Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $\textbf {Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11–29. MR 1617987, DOI 10.1007/PL00004405
- Bjorn Poonen, Uniform boundedness of rational points and preperiodic points, arXiv:1206.7104 (2012).
- M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233 (French). MR 688265, DOI 10.1007/BF01393342
- M. Raynaud, Sous-variétés d’une variété abélienne et points de torsion, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 327–352 (French). MR 717600
- Juan Rivera-Letelier. Dynamique des fonctions rationnelles sur des corps locaux, PhD thesis, Universite de Paris XI, 2000.
- Juan Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque 287 (2003), xv, 147–230 (French, with English and French summaries). Geometric methods in dynamics. II. MR 2040006
- Juan Rivera-Letelier, Espace hyperbolique $p$-adique et dynamique des fonctions rationnelles, Compositio Math. 138 (2003), no. 2, 199–231 (French, with English summary). MR 2018827, DOI 10.1023/A:1026136530383
- Robert Rumely, The minimal resultant locus, Acta Arith. 169 (2015), no. 3, 251–290. MR 3361223, DOI 10.4064/aa169-3-3
- Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341, DOI 10.1512/iumj.1997.46.1441
- Kaoru Sano, Growth rate of ample heights and the dynamical Mordell-Lang conjecture, Int. J. Number Theory 14 (2018), no. 10, 2673–2685. MR 3869605, DOI 10.1142/S1793042118501610
- Thomas Scanlon and Yu Yasufuku, Exponential-polynomial equations and dynamical return sets, Int. Math. Res. Not. IMRN 16 (2014), 4357–4367. MR 3250036, DOI 10.1093/imrn/rnt081
- Victor Scharaschkin, Local-global problems and the Brauer-Manin obstruction, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–University of Michigan. MR 2700328
- Dierk Schleicher, Internal addresses of the Mandelbrot set and Galois groups of polynomials, Arnold Math. J. 3 (2017), no. 1, 1–35. MR 3646529, DOI 10.1007/s40598-016-0042-x
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, Research Notes in Mathematics, vol. 7, A K Peters, Ltd., Wellesley, MA, 1998. With the collaboration of Willem Kuyk and John Labute; Revised reprint of the 1968 original. MR 1484415
- Xuancheng Shao, Polynomial values modulo primes on average and sharpness of the larger sieve, Algebra Number Theory 9 (2015), no. 10, 2325–2346. MR 3437764, DOI 10.2140/ant.2015.9.2325
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140, DOI 10.24033/asens.1522
- Joseph H. Silverman, Good reduction and Shafarevich-type theorems for dynamical systems with portrait level structures, Pacific J. Math. 295 (2018), no. 1, 145–190. MR 3778330, DOI 10.2140/pjm.2018.295.145
- Joseph H. Silverman, Rational points on $K3$ surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347–373. MR 1115546, DOI 10.1007/BF01232270
- Joseph H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793–829. MR 1240603, DOI 10.1215/S0012-7094-93-07129-3
- Joseph H. Silverman, The field of definition for dynamical systems on $\mathbf P^1$, Compositio Math. 98 (1995), no. 3, 269–304. MR 1351830
- Joseph H. Silverman, Rational functions with a polynomial iterate, J. Algebra 180 (1996), no. 1, 102–110. MR 1375568, DOI 10.1006/jabr.1996.0054
- Joseph H. Silverman, The space of rational maps on $\mathbf P^1$, Duke Math. J. 94 (1998), no. 1, 41–77. MR 1635900, DOI 10.1215/S0012-7094-98-09404-2
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Joseph H. Silverman, Variation of periods modulo $p$ in arithmetic dynamics, New York J. Math. 14 (2008), 601–616. MR 2448661
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- Joseph H. Silverman, Height estimates for equidimensional dominant rational maps, J. Ramanujan Math. Soc. 26 (2011), no. 2, 145–163. MR 2816785
- Joseph H. Silverman, Moduli spaces and arithmetic dynamics, CRM Monograph Series, vol. 30, American Mathematical Society, Providence, RI, 2012. MR 2884382, DOI 10.1090/crmm/030
- Joseph H. Silverman, Primitive divisors, dynamical Zsigmondy sets, and Vojta’s conjecture, J. Number Theory 133 (2013), no. 9, 2948–2963. MR 3057058, DOI 10.1016/j.jnt.2013.03.005
- Joseph H. Silverman, Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647–678. MR 3233709, DOI 10.1017/etds.2012.144
- Joseph H. Silverman, Arithmetic and dynamical degrees on abelian varieties, J. Théor. Nombres Bordeaux 29 (2017), no. 1, 151–167 (English, with English and French summaries). MR 3614521, DOI 10.5802/jtnb.973
- Joseph H. Silverman and Gregory S. Call, Degeneration of dynamical degrees in families of maps, Acta Arith. 184 (2018), no. 2, 101–116. MR 3841148, DOI 10.4064/aa8620-5-2017
- Joseph H. Silverman and Bianca Viray, On a uniform bound for the number of exceptional linear subvarieties in the dynamical Mordell-Lang conjecture, Math. Res. Lett. 20 (2013), no. 3, 547–566. MR 3162847, DOI 10.4310/MRL.2013.v20.n3.a12
- Joseph H. Silverman and José Felipe Voloch, A local-global criterion for dynamics on $\Bbb P^1$, Acta Arith. 137 (2009), no. 3, 285–294. MR 2496466, DOI 10.4064/aa137-3-8
- Vijay A. Sookdeo, Integer points in backward orbits, J. Number Theory 131 (2011), no. 7, 1229–1239. MR 2782838, DOI 10.1016/j.jnt.2011.01.005
- Joel Specter, Polynomials with surjective arboreal galois representations exist in every degree, arXiv:1803.00434 (2018).
- Michael Stoll, Galois groups over $\textbf {Q}$ of some iterated polynomials, Arch. Math. (Basel) 59 (1992), no. 3, 239–244. MR 1174401, DOI 10.1007/BF01197321
- Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380. MR 2465796, DOI 10.1112/S1461157000000644
- Brian Justin Stout, A dynamical Shafarevich theorem for twists of rational morphisms, Acta Arith. 166 (2014), no. 1, 69–80. MR 3273498, DOI 10.4064/aa166-1-6
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- L. Szpiro and L. West, A dynamical Shafarevich theorem for rational maps over number fields and function fields, arXiv:1705.05489 (2017).
- Lucien Szpiro, Michael Tepper, and Phillip Williams, Semi-stable reduction implies minimality of the resultant, J. Algebra 397 (2014), 489–498. MR 3119234, DOI 10.1016/j.jalgebra.2013.09.008
- Lucien Szpiro and Thomas J. Tucker, A Shafarevich-Faltings theorem for rational functions, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 715–728. MR 2435841, DOI 10.4310/PAMQ.2008.v4.n3.a4
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 33–52. MR 0393039
- J. Tate, Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983), no. 1, 287–294. MR 692114, DOI 10.2307/2374389
- E. Thiran, D. Verstegen, and J. Weyers, $p$-adic dynamics, J. Statist. Phys. 54 (1989), no. 3-4, 893–913. MR 988564, DOI 10.1007/BF01019780
- Eugenio Trucco, Wandering Fatou components and algebraic Julia sets, Bull. Soc. Math. France 142 (2014), no. 3, 411–464 (English, with English and French summaries). MR 3295719, DOI 10.24033/bsmf.2670
- Emmanuel Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167–179 (French). MR 1609514, DOI 10.2307/120987
- Ming-Xi Wang, A dynamical Mordell-Lang property on the disk, Trans. Amer. Math. Soc. 369 (2017), no. 3, 2183–2204. MR 3581231, DOI 10.1090/tran/6775
- Junyi Xie, Dynamical Mordell-Lang conjecture for birational polynomial morphisms on $\Bbb A^2$, Math. Ann. 360 (2014), no. 1-2, 457–480. MR 3263169, DOI 10.1007/s00208-014-1039-1
- Junyi Xie, The dynamical Mordell-Lang conjecture for polynomial endomorphisms of the affine plane, Astérisque 394 (2017), vi+110 (English, with English and French summaries). MR 3758955
- Junyi Xie, Periodic points of birational transformations on projective surfaces, Duke Math. J. 164 (2015), no. 5, 903–932. MR 3332894, DOI 10.1215/00127094-2877402
- Junyi Xie, Algebraic dynamics of the lifts of Frobenius, Algebra Number Theory 12 (2018), no. 7, 1715–1748. MR 3871508, DOI 10.2140/ant.2018.12.1715
- Junyi Xie, The existence of Zariski dense orbits for polynomial endomorphisms of the affine plane, Compos. Math. 153 (2017), no. 8, 1658–1672. MR 3705271, DOI 10.1112/S0010437X17007187
- Shou-Wu Zhang, Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), no. 1, 159–165. MR 1609518, DOI 10.2307/120986
- Shou-Wu Zhang, Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 381–430. MR 2408228, DOI 10.4310/SDG.2005.v10.n1.a9
- Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
- Michael Ernest Zieve, Cycles of polynomial mappings, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–University of California, Berkeley. MR 2694837
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284 (German). MR 1546236, DOI 10.1007/BF01692444
Additional Information
- Robert Benedetto
- Affiliation: Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts 01002
- MR Author ID: 647128
- Email: rlbenedetto@amherst.edu
- Patrick Ingram
- Affiliation: Department of Mathematics and Statistics, York University, N520 Ross, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
- MR Author ID: 759982
- Email: pingram@yorku.ca
- Rafe Jones
- Affiliation: Carleton College, Department of Mathematics and Statistics, Northfield, Minnesota 55057
- MR Author ID: 676504
- ORCID: 0000-0002-4840-4616
- Email: rfjones@carleton.edu
- Michelle Manes
- Affiliation: Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, Hawaii 96822
- MR Author ID: 838252
- Email: mmanes@math.hawaii.edu
- Joseph H. Silverman
- Affiliation: Mathematics Department, Box 1917, Brown University, Providence, Rhode Island 02912
- MR Author ID: 162205
- ORCID: 0000-0003-3887-3248
- Email: jhs@math.brown.edu
- Thomas J. Tucker
- Affiliation: Mathematics Department, 915 Hylan Building, University of Rochester, Rochester, New York 14627
- MR Author ID: 310767
- ORCID: 0000-0002-8582-2198
- Email: thomas.tucker@rochester.edu
- Received by editor(s): June 30, 2018
- Published electronically: March 1, 2019
- Additional Notes: The first author’s research was supported by NSF Grant DMS-1501766.
The fourth author’s research was supported by Simons Collaboration Grant #359721.
The fifth author’s research was supported by Simons Collaboration Grant #241309.
The sixth author’s research was supported by NSF Grant DMS-0101636. - © Copyright 2019 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 56 (2019), 611-685
- MSC (2010): Primary 37P05; Secondary 37P15, 37P20, 37P25, 37P30, 37P45, 37P55
- DOI: https://doi.org/10.1090/bull/1665
- MathSciNet review: 4007163