Geometric intersection numbers on a four-punctured sphere
HTML articles powered by AMS MathViewer
- by Yungyen Chiang
- Conform. Geom. Dyn. 1 (1997), 87-103
- DOI: https://doi.org/10.1090/S1088-4173-97-00020-9
- Published electronically: December 9, 1997
- PDF | Request permission
Abstract:
Let $\mathcal {G}_{4}$ be the space of all simple closed geodesics on the punctured sphere $\Sigma _{4}$. We construct an explicit homeomorphism of the completion of $\mathcal {G}_{4}$ onto a circle by using geometric intersection numbers. Also, we relate these geometric intersection numbers to trace polynomials of transformations corresponding to geodesics in $\mathcal {G}_{4}$ in a representation of $\pi _{1}(\Sigma _{4})$ into $PSL(2,\mathbf {C})$.References
- Joan S. Birman and Caroline Series, Algebraic linearity for an automorphism of a surface group, J. Pure Appl. Algebra 52 (1988), no. 3, 227–275. MR 952081, DOI 10.1016/0022-4049(88)90094-1
- Y. Chiang, Pleating Varieties in the Maskit Embeddings of Teichmüller Spaces of Punctured Spheres, The City University of New York, GSUC, Ph. D. Thesis, 1995.
- A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque, 66–67 (1979).
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- Linda Keen and Caroline Series, The Riley slice of Schottky space, Proc. London Math. Soc. (3) 69 (1994), no. 1, 72–90. MR 1272421, DOI 10.1112/plms/s3-69.1.72
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
Bibliographic Information
- Yungyen Chiang
- Affiliation: 4F No. 16 Chung Yang Rd., Taipei, Taiwan, Republic of China
- Received by editor(s): April 28, 1997
- Received by editor(s) in revised form: September 6, 1997
- Published electronically: December 9, 1997
- © Copyright 1997 American Mathematical Society
- Journal: Conform. Geom. Dyn. 1 (1997), 87-103
- MSC (1991): Primary 30Fxx; Secondary 57-XX
- DOI: https://doi.org/10.1090/S1088-4173-97-00020-9
- MathSciNet review: 1482943