The Teichmüller distance on the space of flat conformal structures
HTML articles powered by AMS MathViewer
- by Hiroyasu Izeki
- Conform. Geom. Dyn. 2 (1998), 1-24
- DOI: https://doi.org/10.1090/S1088-4173-98-00009-5
- Published electronically: February 3, 1998
- PDF | Request permission
Abstract:
We define the Teichmüller pseudodistance on spaces of flat conformal structures by the same manner as classical Teichmüller distance on the Teichmüller space of Riemann surfaces. We will prove that for compact manifolds this pseudodistance becomes a complete distance. We will also prove similar results for noncompact manifolds under certain assumptions.References
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- William M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 169–198. MR 957518, DOI 10.1090/conm/074/957518
- Mitsuhiro Itoh, Yamabe metrics and the space of conformal structures, Internat. J. Math. 2 (1991), no. 6, 659–671. MR 1137091, DOI 10.1142/S0129167X91000363
- Dennis Johnson and John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48–106. MR 900823, DOI 10.1007/978-1-4899-6664-3_{3}
- Jacqueline Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$^\textrm {o}$ (2) 39 (1971), no. 5, 44 (French). MR 322739
- Jacqueline Lelong-Ferrand, Geometrical interpretations of scalar curvature and regularity of conformal homeomorphisms, Differential geometry and relativity, Mathematical Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht, 1976, pp. 91–105. MR 0442846
- O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969), 40. MR 0259114
- Olli Martio and Uri Srebro, Universal radius of injectivity for locally quasiconformal mappings, Israel J. Math. 29 (1978), no. 1, 17–23. MR 492243, DOI 10.1007/BF02760398
- Shigenori Matsumoto, Foundations of flat conformal structure, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 167–261. MR 1208312, DOI 10.2969/aspm/02010167
- John W. Morgan, Group actions on trees and the compactification of the space of classes of $\textrm {SO}(n,1)$-representations, Topology 25 (1986), no. 1, 1–33. MR 836721, DOI 10.1016/0040-9383(86)90002-9
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 303464
- Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. MR 994644, DOI 10.1090/mmono/073
- —, The Liouville theorem with minimal regularity conditions, Sibirsk. Math. Zh. 8 (1967), 835–840 (Russian).
- Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. MR 994644, DOI 10.1090/mmono/073
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- Hassler Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545–556. MR 95844, DOI 10.2307/1969908
Bibliographic Information
- Hiroyasu Izeki
- Affiliation: Mathematical Institute, Tohoku University, Aoba-ku, Sendai, 980-77, Japan
- Email: izeki@math.tohoku.ac.jp
- Received by editor(s): February 24, 1997
- Received by editor(s) in revised form: October 24, 1997
- Published electronically: February 3, 1998
- © Copyright 1998 American Mathematical Society
- Journal: Conform. Geom. Dyn. 2 (1998), 1-24
- MSC (1991): Primary 58D27
- DOI: https://doi.org/10.1090/S1088-4173-98-00009-5
- MathSciNet review: 1600252