Matrix representations and the Teichmüller space of the twice punctured torus
HTML articles powered by AMS MathViewer
- by J. O. Button
- Conform. Geom. Dyn. 4 (2000), 97-107
- DOI: https://doi.org/10.1090/S1088-4173-00-00054-0
- Published electronically: August 23, 2000
- PDF | Request permission
Abstract:
We realise the Teichmüller space of the twice-punctured torus as a set of triples of matrices that are suitably normalised. As a consequence, we see the space as a simple open subset of $\mathbb R^4$ which is obtained directly from the matrix entries. We also discuss the connection between this representation and the one in terms of the traces of elements.References
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131–172. MR 621883, DOI 10.1090/S0273-0979-1981-14933-8 b J. O. Button, Teichmüller spaces, Schottky groups and representations of surface groups, Preprint, University of Oxford (1999).
- Clifford J. Earle, Some intrinsic coordinates on Teichmüller space, Proc. Amer. Math. Soc. 83 (1981), no. 3, 527–531. MR 627684, DOI 10.1090/S0002-9939-1981-0627684-5
- Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308
- Linda Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math. (2) 84 (1966), 404–420. MR 203000, DOI 10.2307/1970454
- Linda Keen, On Fricke moduli, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 205–224. MR 0288252
- Irwin Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578. MR 1049503, DOI 10.1090/S0894-0347-1990-1049503-1
- Wilhelm Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), no. 1, 91–103. MR 558891, DOI 10.1007/BF01214715
- Bernard Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 773–777. MR 346149, DOI 10.1090/S0002-9904-1974-13600-1
- Bernard Maskit, Parameters for Fuchsian groups. I. Signature $(0,4)$, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 251–265. MR 955844, DOI 10.1007/978-1-4613-9611-6_{1}7
- Bernard Maskit, Parameters for Fuchsian groups. II. Topological type $(1,1)$, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 265–275. MR 1024430, DOI 10.5186/aasfm.1989.1419
- Bernard Maskit, Explicit matrices for Fuchsian groups, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 451–466. MR 1292919, DOI 10.1090/conm/169/01674
- Bernard Maskit, New parameters for Fuchsian groups of genus $2$, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3643–3652. MR 1616641, DOI 10.1090/S0002-9939-99-04973-4
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- Mika Seppälä and Tuomas Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv. 61 (1986), no. 1, 149–160. MR 847525, DOI 10.1007/BF02621907
- Mika Seppälä and Tuomas Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 267–284. MR 955845, DOI 10.1007/978-1-4613-9611-6_{1}8
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321 v H. Vogt, Sur les invariants, fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. Ecole. Norm. Sup. (3) 6 (1889), Suppl. 3–72.
Bibliographic Information
- J. O. Button
- Affiliation: Wadham College, University of Oxford, OX1 3PN, England, United Kingdom
- Email: button@maths.ox.ac.uk
- Received by editor(s): August 16, 1999
- Received by editor(s) in revised form: July 10, 2000
- Published electronically: August 23, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Conform. Geom. Dyn. 4 (2000), 97-107
- MSC (2000): Primary 20H10; Secondary 32G15
- DOI: https://doi.org/10.1090/S1088-4173-00-00054-0
- MathSciNet review: 1778790