Metric and geometric quasiconformality in Ahlfors regular Loewner spaces
HTML articles powered by AMS MathViewer
- by Jeremy T. Tyson PDF
- Conform. Geom. Dyn. 5 (2001), 21-73 Request permission
Abstract:
Recent developments in geometry have highlighted the need for abstract formulations of the classical theory of quasiconformal mappings. We modify Pansu’s generalized modulus to study quasiconformal geometry in spaces with metric and measure-theoretic properties sufficiently similar to Euclidean space. Our basic objects of study are locally compact metric spaces equipped with a Borel measure which is Ahlfors-David regular of dimension $Q>1$, and satisfies the Loewner condition of Heinonen-Koskela. For homeomorphisms between open sets in two such spaces, we prove the equivalence of three conditions: a version of metric quasiconformality, local quasisymmetry and geometric quasiconformality.
We derive from these results several corollaries. First, we show that the Loewner condition is a quasisymmetric invariant in locally compact Ahlfors regular spaces. Next, we show that a proper $Q$-regular Loewner space, $Q>1$, is not quasiconformally equivalent to any subdomain. (In the Euclidean case, this result is due to Loewner.) Finally, we characterize products of snowflake curves up to quasisymmetric/bi-Lipschitz equivalence: two such products are bi-Lipschitz equivalent if and only if they are isometric and are quasisymmetrically equivalent if and only if they are conformally equivalent.
References
- Pekka Alestalo and Jussi Väisälä, Quasisymmetric embeddings of products of cells into the Euclidean space, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 2, 375–392. MR 1274089 bal:heisenberg Z. Balogh, Hausdorff dimension distortion of QC mappings on the Heisenberg group, J. Anal. Math. 83 (2001), 289–312.
- Zoltán M. Balogh and Pekka Koskela, Quasiconformality, quasisymmetry, and removability in Loewner spaces, Duke Math. J. 101 (2000), no. 3, 554–577. With an appendix by Jussi Väisälä. MR 1740689, DOI 10.1215/S0012-7094-00-10138-X bt:polar Z. Balogh and J. T. Tyson, Polar coordinates and regularity of quasiconformal mappings in Carnot groups, preprint, 2001. bht:singular Z. M. Balogh, I. Holopainen, and J. T. Tyson, Singular solutions, homogeneous norms and quasiconformal mappings on Carnot groups, Preprint #269, University of Helsinki, September 2000. ben:polyedres N. Benakli, Polyèdres hyperboliques, passage du local au global, Thèse, Université Paris-Sud, 1992. bt:locmin C. J. Bishop and J. T. Tyson, Locally minimal sets for conformal dimension, Ann. Acad. Sci. Fenn. Ser. A I Math. 26 (2001), 361–373.
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68. MR 982072, DOI 10.1007/BFb0081242
- M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245–268 (French, with English and French summaries). MR 1445387, DOI 10.1007/PL00001619
- Marc Bourdon and Hervé Pajot, Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2315–2324. MR 1610912, DOI 10.1090/S0002-9939-99-04901-1 bbt:analysis A. Bruckner, J. Bruckner, and B. Thomson, Real analysis, Prentice-Hall, N.J., 1997.
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Squaring rectangles: the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133–212. MR 1292901, DOI 10.1090/conm/169/01656
- J. W. Cannon and E. L. Swenson, Recognizing constant curvature discrete groups in dimension $3$, Trans. Amer. Math. Soc. 350 (1998), no. 2, 809–849. MR 1458317, DOI 10.1090/S0002-9947-98-02107-2 cap:regularity1 L. Capogna, Regularity of quasilinear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), no. 9, 867–889.
- Luca Capogna, Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263–295. MR 1679786, DOI 10.1007/s002080050261
- Luca Capogna and Puqi Tang, Uniform domains and quasiconformal mappings on the Heisenberg group, Manuscripta Math. 86 (1995), no. 3, 267–281. MR 1323792, DOI 10.1007/BF02567994
- Christophe Champetier, Propriétés statistiques des groupes de présentation finie, Adv. Math. 116 (1995), no. 2, 197–262 (French, with English summary). MR 1363765, DOI 10.1006/aima.1995.1067
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- Guy David and Stephen Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR 1616732
- G. A. Edgar, Packing measure as a gauge variation, Proc. Amer. Math. Soc. 122 (1994), no. 1, 167–174. MR 1197535, DOI 10.1090/S0002-9939-1994-1197535-0
- Gerald A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998. MR 1484412, DOI 10.1007/978-1-4757-2958-0 edg:metric —, Packing measure in general metric spaces, Real Anal. Exchange (to appear).
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519. MR 132841, DOI 10.1090/S0002-9947-1961-0132841-2
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- F. W. Gehring, Quasiconformal mappings, Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975) Internat. Atomic Energy Agency, Vienna, 1976, pp. 213–268. MR 0480997
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Bruce Hanson and Juha Heinonen, An $n$-dimensional space that admits a Poincaré inequality but has no manifold points, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3379–3390. MR 1690990, DOI 10.1090/S0002-9939-00-05453-8
- Juha Heinonen, Calculus on Carnot groups, Fall School in Analysis (Jyväskylä, 1994) Report, vol. 68, Univ. Jyväskylä, Jyväskylä, 1995, pp. 1–31. MR 1351042, DOI 10.1530/jrf.0.0680001
- Juha Heinonen, A capacity estimate on Carnot groups, Bull. Sci. Math. 119 (1995), no. 5, 475–484. MR 1354248
- Juha Heinonen and Ilkka Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), no. 1, 109–148. MR 1630785, DOI 10.1007/BF02921707
- Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79. MR 1323982, DOI 10.1007/BF01241122
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747 hkst:banach J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139.
- Juha Heinonen and Stephen Semmes, Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn. 1 (1997), 1–12 (electronic). MR 1452413, DOI 10.1090/S1088-4173-97-00012-X
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338. MR 788413, DOI 10.1007/BF01388609
- A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384, DOI 10.1006/aima.1995.1017
- Pekka Koskela, Removable sets for Sobolev spaces, Ark. Mat. 37 (1999), no. 2, 291–304. MR 1714767, DOI 10.1007/BF02412216
- Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1–17. MR 1628655 laa:regular T. Laakso, Ahlfors ${Q}$-regular spaces with arbitrary ${Q}$ admitting weak Poincaré inequalities, Geom. Funct. Anal. 10 (2000), no. 1, 111–123.
- Charles Loewner, On the conformal capacity in space, J. Math. Mech. 8 (1959), 411–414. MR 0104785, DOI 10.1512/iumj.1959.8.58029
- G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal. 5 (1995), no. 2, 402–433. MR 1334873, DOI 10.1007/BF01895673
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484 rash:nonholonomic P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. 2 (1938), 83–94, in Russian. rei:htype H. M. Reimann, Rigidity of ${H}$-type groups, Math. Z. (to appear).
- H. M. Reimann, An estimate for pseudoconformal capacities on the sphere, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 315–324. MR 1024433, DOI 10.5186/aasfm.1989.1426 rr:complexified H. M. Reimann and F. Ricci, The complexified Heisenberg group, Preprint, 2000.
- Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), no. 3, 657–675, iii–iv (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 3, 567–583. MR 1457485, DOI 10.1007/BF02683844
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Xavier Saint Raymond and Claude Tricot, Packing regularity of sets in $n$-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133–145. MR 913458, DOI 10.1017/S0305004100064690
- S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155–295. MR 1414889, DOI 10.1007/BF01587936 sh:newtonian N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279.
- Puqi Tang, Quasiconformal homeomorphisms on CR $3$-manifolds with symmetries, Math. Z. 219 (1995), no. 1, 49–69. MR 1340848, DOI 10.1007/BF02572349
- S. James Taylor and Claude Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 285–296. MR 817670, DOI 10.1017/S0305004100064203
- B. S. Thomson, Construction of measures in metric spaces, J. London Math. Soc. (2) 14 (1976), no. 1, 21–24. MR 422550, DOI 10.1112/jlms/s2-14.1.21
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158 tys:analytic —, Analytic properties of locally quasisymmetric mappings from Euclidean domains, Indiana Univ. Math. J. 49 (2000), no. 3, 995–1016.
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- Jussi Väisälä, Quasisymmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), no. 1, 191–204. MR 597876, DOI 10.1090/S0002-9947-1981-0597876-7
- Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, DOI 10.1007/BF02392837
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
- William P. Ziemer, Extremal length and $p$-capacity, Michigan Math. J. 16 (1969), 43–51. MR 247077
Additional Information
- Jeremy T. Tyson
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Address at time of publication: Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3651
- MR Author ID: 625886
- Email: tyson@math.sunysb.edu
- Received by editor(s): May 31, 2000
- Received by editor(s) in revised form: June 4, 2001
- Published electronically: August 8, 2001
- Additional Notes: The results of this paper form part of the author’s Ph.D. thesis completed at the University of Michigan in 1999. Research supported by an NSF Graduate Research Fellowship and a Sloan Doctoral Dissertation Fellowship.
- © Copyright 2001 American Mathematical Society
- Journal: Conform. Geom. Dyn. 5 (2001), 21-73
- MSC (2000): Primary 30C65; Secondary 28A78, 46E35, 43A85
- DOI: https://doi.org/10.1090/S1088-4173-01-00064-9
- MathSciNet review: 1872156