Boundary behavior of quasi-regular maps and the isodiametric profile
HTML articles powered by AMS MathViewer
- by Bruce Hanson, Pekka Koskela and Marc Troyanov
- Conform. Geom. Dyn. 5 (2001), 81-99
- DOI: https://doi.org/10.1090/S1088-4173-01-00076-5
- Published electronically: September 6, 2001
- PDF | Request permission
Abstract:
We study obstructions for a quasi-regular mapping $f:M\rightarrow N$ of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of $M$.References
- Ahl L.V. Ahlfors, On quasi-conformal mappings. J. Analyse Math. 3 (1954), 1–58.
- Mario Bonk, Pekka Koskela, and Steffen Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. (3) 77 (1998), no. 3, 635–664. MR 1643421, DOI 10.1112/S0024611598000586
- Isaac Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR 1271141
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Juha Heinonen and Steffen Rohde, The Gehring-Hayman inequality for quasihyperbolic geodesics, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 3, 393–405. MR 1235987, DOI 10.1017/S0305004100071681
- O. Martio and William P. Ziemer, Lusin’s condition (N) and mappings with nonnegative Jacobians, Michigan Math. J. 39 (1992), no. 3, 495–508. MR 1182504, DOI 10.1307/mmj/1029004603
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. MR 994644, DOI 10.1090/mmono/073 resh2 Yu.G. Reshetnyak, Two-dimensional manifolds of bounded curvature. Encyclopedia of Math. Sciences, vol. 70 Geometry IV, Springer 1993.
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- Marc Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793–821. MR 1005085, DOI 10.1090/S0002-9947-1991-1005085-9
- M. Troyanov, Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), no. 4, 125–150. MR 1749853
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- V. A. Zorich and V. M. Kesel′man, On the conformal type of a Riemannian manifold, Funktsional. Anal. i Prilozhen. 30 (1996), no. 2, 40–55, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 30 (1996), no. 2, 106–117. MR 1402080, DOI 10.1007/BF02509450
Bibliographic Information
- Bruce Hanson
- Affiliation: Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057
- Email: hansonb@stolaf.edu
- Pekka Koskela
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
- MR Author ID: 289254
- Email: pkoskela@math.jyu.fi
- Marc Troyanov
- Affiliation: Department of Mathematics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- MR Author ID: 234039
- Email: marc.troyanov@epfl.ch
- Received by editor(s): June 4, 2001
- Published electronically: September 6, 2001
- Additional Notes: The second author was supported in part by the Academy of Finland grants 39788 and 41933
- © Copyright 2001 American Mathematical Society
- Journal: Conform. Geom. Dyn. 5 (2001), 81-99
- MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S1088-4173-01-00076-5
- MathSciNet review: 1872158