Continuity of Hausdorff dimension of JuliaLavaurs sets as a function of the phase
HTML articles powered by AMS MathViewer
 by Mariusz Urbanski and Michel Zinsmeister PDF
 Conform. Geom. Dyn. 5 (2001), 140152 Request permission
Abstract:
Let $f_{0}(z)=z^{2}+1/4$ and ${\mathcal E}_{0}$ the set of phases $\overline {\sigma }$ such that the critical point $0$ escapes in one step by the Lavaurs map $g_{\sigma }$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $\mathbb R/ \mathbb Z$. We prove that if $\overline {\sigma }_{n}\in {\mathcal E}_{0}$ converges to $\overline {\sigma }\in \partial {\mathcal E}_{0}$ in such a way that $g_{\sigma _{n}}(0)$ converges to $g_{\sigma }(0)$ along an external ray, then the Hausdorff dimension of the JuliaLavaurs set $J(f_{0}, g_{\sigma _{n}})$ converges to the Hausdorff dimension of $J(f_{0},g_{\sigma })$.References

uz0 Adrien Douady: Does a Julia set depend continuously on the polynomial? Proceedings of Symposia in Applied Mathematics 49 (1994), 91–135.
uz1 Pierre Lavaurs: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. These, Université ParisSud, 1989.
uz5 Mariusz Urbanski and Michel Zinsmeister: Geometry of hyperbolic JuliaLavaurs sets, Preprint 2000, to appear Indagationes Math.
 R. Daniel Mauldin and Mariusz Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105–154. MR 1387085, DOI 10.1112/plms/s373.1.105 uz7 Michel Zinsmeister (after A. Douady): Basic parabolic implosion in five days. Jyvaskyla 1997.
 Adrien Douady, Pierrette Sentenac, and Michel Zinsmeister, Implosion parabolique et dimension de Hausdorff, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 765–772 (French, with English and French summaries). MR 1483715, DOI 10.1016/S07644442(97)800572
 Olivier Bodart and Michel Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), no. 2, 121–137 (French, with English summary). MR 1418992
 Curtis T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120 (1998), no. 4, 691–721. MR 1637951, DOI 10.1353/ajm.1998.0031 HZ Guillaume Havard and Michel Zinsmeister: Thermodynamic formalism and variations of the Hausdorff dimension of quadratic Julia sets, Commun. Math. Phys. 210 (2000), 225–247.
 David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI 10.1017/s0143385700009603
 R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
Additional Information
 Mariusz Urbanski
 Affiliation: Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, Texas 762031430
 Email: urbanski@unt.edu
 Michel Zinsmeister
 Affiliation: Mathématiques, Université d’Orleans, BP 6759 45067 Orléans Cedex, France
 Email: Michel.Zinsmeister@labomath.univorleans.fr
 Received by editor(s): September 18, 2000
 Received by editor(s) in revised form: June 28, 2001
 Published electronically: October 18, 2001
 Additional Notes: The research of the first author was partially supported by the NSF Grant DMS 9801583. He wishes to thank the University of Orleans and IHES, where a part of the research was done, for warm hospitality and excellent working conditions
 © Copyright 2001 American Mathematical Society
 Journal: Conform. Geom. Dyn. 5 (2001), 140152
 MSC (2000): Primary 37F45; Secondary 37F35, 37F15
 DOI: https://doi.org/10.1090/S1088417301000704
 MathSciNet review: 1872160