Indecomposable continua in exponential dynamics
HTML articles powered by AMS MathViewer
- by Robert L. Devaney and Xavier Jarque
- Conform. Geom. Dyn. 6 (2002), 1-12
- DOI: https://doi.org/10.1090/S1088-4173-02-00080-2
- Published electronically: January 16, 2002
- PDF | Request permission
Abstract:
In this paper we prove the existence of uncountably many indecomposable continua in the dynamics of complex exponentials of the form $E_\lambda (z) = \lambda e^z$ with $\lambda > 1/e$. These continua contain points that share the same itinerary under iteration of $E_\lambda$. These itineraries are bounded but consist of blocks of $0$’s whose lengths increase, and hence these continua are never periodic.References
- Marcy Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121 (1986), no. 1, 29–39. MR 815029, DOI 10.2140/pjm.1986.121.29
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517–1534. MR 1721835, DOI 10.1142/S0218127499001061
- Stephen B. Curry, One-dimensional nonseparating plane continua with disjoint $\epsilon$-dense subcontinua, Topology Appl. 39 (1991), no. 2, 145–151. MR 1108604, DOI 10.1016/0166-8641(91)90014-D
- Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. MR 1257026, DOI 10.1017/S0143385700007586
- Robert L. Devaney and Marilyn B. Durkin, The exploding exponential and other chaotic bursts in complex dynamics, Amer. Math. Monthly 98 (1991), no. 3, 217–233. MR 1093952, DOI 10.2307/2325024
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X Dev Deville, R. E. L., Itineraries of Entire Functions. To appear in J. Difference Eq.
- Núria Fagella, Limiting dynamics for the complex standard family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), no. 3, 673–699. MR 1345989, DOI 10.1142/S0218127495000521
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394
- Judy A. Kennedy, A brief history of indecomposable continua, Continua (Cincinnati, OH, 1994) Lecture Notes in Pure and Appl. Math., vol. 170, Dekker, New York, 1995, pp. 103–126. MR 1326836 Ku Kuratowski, C., Theorie des continus irreducibles entre deux points I. Fund. Math. 3 (1922), 200.
- John C. Mayer, An explosion point for the set of endpoints of the Julia set of $\lambda \exp (z)$, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 177–183. MR 1053806, DOI 10.1017/S0143385700005460
- John C. Mayer, Complex dynamics and continuum theory, Continua (Cincinnati, OH, 1994) Lecture Notes in Pure and Appl. Math., vol. 170, Dekker, New York, 1995, pp. 133–157. MR 1326838
- MichałMisiurewicz, On iterates of $e^{z}$, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 103–106. MR 627790, DOI 10.1017/s014338570000119x MR Moreno Rocha, M., Existence of Indecomposable Continua for Unstable Exponentials. Preprint.
Bibliographic Information
- Robert L. Devaney
- Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
- MR Author ID: 57240
- Email: bob@bu.edu
- Xavier Jarque
- Affiliation: University Autònoma de Barcelona, Barcelona (Bellaterra), Spain
- Email: xavier.jarque@uab.es
- Received by editor(s): August 29, 2001
- Received by editor(s) in revised form: November 24, 2001
- Published electronically: January 16, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Conform. Geom. Dyn. 6 (2002), 1-12
- MSC (2000): Primary 37F10
- DOI: https://doi.org/10.1090/S1088-4173-02-00080-2
- MathSciNet review: 1882085