## Constructing rational maps from subdivision rules

HTML articles powered by AMS MathViewer

- by J. W. Cannon, W. J. Floyd, R. Kenyon and W. R. Parry PDF
- Conform. Geom. Dyn.
**7**(2003), 76-102 Request permission

## Abstract:

Suppose $\mathcal {R}$ is an orientation-preserving finite subdivision rule with an edge pairing. Then the subdivision map $\sigma _{\mathcal {R}}$ is either a homeomorphism, a covering of a torus, or a critically finite branched covering of a 2-sphere. If $\mathcal {R}$ has mesh approaching $0$ and $S_{\mathcal {R}}$ is a 2-sphere, it is proved in Theorem 3.1 that if $\mathcal {R}$ is conformal, then $\sigma _{\mathcal {R}}$ is realizable by a rational map. Furthermore, a general construction is given which, starting with a one-tile rotationally invariant finite subdivision rule, produces a finite subdivision rule $\mathcal {Q}$ with an edge pairing such that $\sigma _{\mathcal {Q}}$ is realizable by a rational map.## References

- Philip L. Bowers and Kenneth Stephenson,
*A “regular” pentagonal tiling of the plane*, Conform. Geom. Dyn.**1**(1997), 58–68. MR**1479069**, DOI 10.1090/S1088-4173-97-00014-3 - Eva Brezin, Rosemary Byrne, Joshua Levy, Kevin Pilgrim, and Kelly Plummer,
*A census of rational maps*, Conform. Geom. Dyn.**4**(2000), 35–74. MR**1749249**, DOI 10.1090/S1088-4173-00-00050-3 - Hans Brolin,
*Invariant sets under iteration of rational functions*, Ark. Mat.**6**(1965), 103–144 (1965). MR**194595**, DOI 10.1007/BF02591353 - James W. Cannon,
*The combinatorial Riemann mapping theorem*, Acta Math.**173**(1994), no. 2, 155–234. MR**1301392**, DOI 10.1007/BF02398434 - J. W. Cannon and E. L. Swenson,
*Recognizing constant curvature discrete groups in dimension $3$*, Trans. Amer. Math. Soc.**350**(1998), no. 2, 809–849. MR**1458317**, DOI 10.1090/S0002-9947-98-02107-2 - J. W. Cannon, W. J. Floyd, and W. R. Parry,
*Squaring rectangles: the finite Riemann mapping theorem*, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133–212. MR**1292901**, DOI 10.1090/conm/169/01656 - J. W. Cannon, W. J. Floyd, and W. R. Parry,
*Sufficiently rich families of planar rings*, Ann. Acad. Sci. Fenn. Math.**24**(1999), no. 2, 265–304. MR**1724092** - J. W. Cannon, W. J. Floyd, and W. R. Parry,
*Finite subdivision rules*, Conform. Geom. Dyn.**5**(2001), 153–196. MR**1875951**, DOI 10.1090/S1088-4173-01-00055-8
Expi J. W. Cannon, W. J. Floyd, and W. R. Parry, - Adrien Douady and John H. Hubbard,
*A proof of Thurston’s topological characterization of rational functions*, Acta Math.**171**(1993), no. 2, 263–297. MR**1251582**, DOI 10.1007/BF02392534
Fo L. R. Ford, Automorphic Functions, Mc-Graw Hill, New York, 1929.
- Tapani Kuusalo,
*Verallgemeinerter Riemannscher Abbidungssatz und quasikonforme Mannigfaltigkeiten*, Ann. Acad. Sci. Fenn. Ser. A I No.**409**(1967), 24 (German). MR**0218560**
La S. Lattès, - Joseph Lehner,
*Discontinuous groups and automorphic functions*, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR**0164033**, DOI 10.1090/surv/008 - Curtis T. McMullen,
*Complex dynamics and renormalization*, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR**1312365** - Daniel Meyer,
*Quasisymmetric embedding of self similar surfaces and origami with rational maps*, Ann. Acad. Sci. Fenn. Math.**27**(2002), no. 2, 461–484. MR**1922201** - John Milnor,
*Dynamics in one complex variable*, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR**1721240**
Pi1 K. M. Pilgrim, - Kevin M. Pilgrim,
*Canonical Thurston obstructions*, Adv. Math.**158**(2001), no. 2, 154–168. MR**1822682**, DOI 10.1006/aima.2000.1971
CP K. Stephenson, - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Dennis Sullivan,
*Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains*, Ann. of Math. (2)**122**(1985), no. 3, 401–418. MR**819553**, DOI 10.2307/1971308 - Dennis Sullivan,
*Conformal dynamical systems*, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR**730296**, DOI 10.1007/BFb0061443
Th W. P. Thurston,

*Expansion complexes for finite subdivision rules I*, preprint. Expii J. W. Cannon, W. J. Floyd, and W. R. Parry,

*Expansion complexes for finite subdivision rules II*, in preparation.

*Sur l’iteration des substitutions rationelles et les fonctions de Poincaré*, C. R. Acad. Sci. Paris

**16**(1918), 26–28.

*Cylinders for iterated rational maps*, Ph.D. thesis, University of California, Berkeley, 1994.

*CirclePack*, software, available from http://www.math.utk.edu/˜kens.

*Lecture notes*, CBMS Conference, University of Minnesota at Duluth, 1983.

## Additional Information

**J. W. Cannon**- Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
- Email: cannon@math.byu.edu
**W. J. Floyd**- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061
- MR Author ID: 67750
- Email: floyd@math.vt.edu
**R. Kenyon**- Affiliation: Laboratoire de Topologie, Université Paris-Sud, Bat. 425, 91405 Orsay Cedex-France
- MR Author ID: 307971
**W. R. Parry**- Affiliation: Department of Mathematics, Eastern Michigan University, Ypsilanti, Michigan 48197
- MR Author ID: 136390
- Email: walter.parry@emich.edu
- Received by editor(s): September 5, 2001
- Received by editor(s) in revised form: April 4, 2003
- Published electronically: July 28, 2003
- Additional Notes: This research was supported in part by NSF grants DMS-9803868, DMS-9971783, and DMS-10104030.
- © Copyright 2003 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**7**(2003), 76-102 - MSC (2000): Primary 37F10, 52C20; Secondary 57M12
- DOI: https://doi.org/10.1090/S1088-4173-03-00082-1
- MathSciNet review: 1992038