Geometry of infinitely generated Veech groups
HTML articles powered by AMS MathViewer
- by Pascal Hubert and Thomas A. Schmidt PDF
- Conform. Geom. Dyn. 10 (2006), 1-20 Request permission
Abstract:
Veech groups uniformize Teichmüller geodesics in Riemann moduli space. We gave examples of infinitely generated Veech groups; see Duke Math. J. 123 (2004), 49–69. Here we show that the associated Teichmüller geodesics can even have both infinitely many cusps and infinitely many infinite ends.References
- José Bertin, Compactification des schémas de Hurwitz, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 11, 1063–1066 (French, with English and French summaries). MR 1396641
- Kariane Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004), no. 4, 871–908. MR 2083470, DOI 10.1090/S0894-0347-04-00461-8
- Pierre Dèbes, Méthodes topologiques et analytiques en théorie inverse de Galois: théorème d’existence de Riemann, Arithmétique de revêtements algébriques (Saint-Étienne, 2000) Sémin. Congr., vol. 5, Soc. Math. France, Paris, 2001, pp. 27–41 (French, with English and French summaries). MR 1924915
- Clifford J. Earle and Frederick P. Gardiner, Teichmüller disks and Veech’s $\scr F$-structures, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 165–189. MR 1429199, DOI 10.1090/conm/201/02618 [EMM]EMM A. Eskin, J. Marklof and D. Morris, Unipotent flows and branched covers of Veech surfaces, e-print. arXiv:math.DS/0408090. To appear, Erg. Th. Dyn. Sys. [Fo]Fo L. R. Ford, Automorphic Functions, McGraw-Hill, New York, 1929.
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 254, Springer-Verlag, Berlin, 1983 (German). MR 871067, DOI 10.1007/978-3-642-68649-8
- Eugene Gutkin, Pascal Hubert, and Thomas A. Schmidt, Affine diffeomorphisms of translation surfaces: periodic points, Fuchsian groups, and arithmeticity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 6, 847–866 (2004) (English, with English and French summaries). MR 2032528, DOI 10.1016/j.ansens.2003.05.001
- Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. MR 1760625, DOI 10.1215/S0012-7094-00-10321-3
- Andrew Haas, Dirichlet points, Garnett points, and infinite ends of hyperbolic surfaces. I, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 3–29. MR 1375503
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Pascal Hubert and Thomas A. Schmidt, Veech groups and polygonal coverings, J. Geom. Phys. 35 (2000), no. 1, 75–91. MR 1767943, DOI 10.1016/S0393-0440(99)00080-7
- P. Hubert and T. A. Schmidt, Invariants of translation surfaces, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 2, 461–495. MR 1824961, DOI 10.5802/aif.1829
- Pascal Hubert and Thomas A. Schmidt, Infinitely generated Veech groups, Duke Math. J. 123 (2004), no. 1, 49–69. MR 2060022, DOI 10.1215/S0012-7094-04-12312-8
- John Hamal Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Mem. Amer. Math. Soc. 4 (1976), no. 166, ix+137. MR 430321, DOI 10.1090/memo/0166
- Steven Kerckhoff, Howard Masur, and John Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), no. 2, 293–311. MR 855297, DOI 10.2307/1971280
- A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975), no. 2, 291–300 (Russian). MR 399423
- Eduard Looijenga, Correspondences between moduli spaces of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 131–150. MR 1722542
- Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885. MR 1992827, DOI 10.1090/S0894-0347-03-00432-6
- Curtis T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003), no. 2, 191–223. MR 2051398, DOI 10.1007/BF02392964 [Mc3]Mc3 —, Dynamics of $\text {SL}(2,\mathbb R)$ over moduli space in genus two, preprint. [Mc4]Mc4 —,Teichmüller curves in genus two: Discriminant and spin, Math. Ann. 333 (2005), 87–130.
- K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein, The locus of curves with prescribed automorphism group, Sūrikaisekikenkyūsho K\B{o}kyūroku 1267 (2002), 112–141. Communications in arithmetic fundamental groups (Kyoto, 1999/2001). MR 1954371
- C. Maclachlan and W. J. Harvey, On mapping-class groups and Teichmüller spaces. 4, Proc. London Math. Soc. (3) 30 (1975), no. part, 496–512. MR 374414, DOI 10.1112/plms/s3-30.4.496
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI 10.2307/1971341
- Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR 1928530, DOI 10.1016/S1874-575X(02)80015-7
- Martin Möller, Teichmüller curves, Galois actions and $\widehat {GT}$-relations, Math. Nachr. 278 (2005), no. 9, 1061–1077. MR 2150378, DOI 10.1002/mana.200310292 [Moe2]Moe2 —Variations of Hodge structures of a Teichmüller curve, e-print arXiv:math. AG/0401290.
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- P. J. Nicholls, Garnett points for Fuchsian groups, Bull. London Math. Soc. 12 (1980), no. 3, 216–218. MR 572105, DOI 10.1112/blms/12.3.216
- Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575, DOI 10.1017/CBO9780511600678
- H. Popp, On a conjecture of H. Rauch on theta constants and Riemann surfaces with many automorphisms, J. Reine Angew. Math. 253 (1972), 66–77. MR 472842, DOI 10.1515/crll.1972.253.66
- Harry E. Rauch, Theta constants on a Riemann surface with many automorphisms, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 305–323. MR 0260996
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441–530. MR 866707, DOI 10.2307/2007091
- W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
- William A. Veech, Geometric realizations of hyperelliptic curves, Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992) Plenum, New York, 1995, pp. 217–226. MR 1402493
- Ya. B. Vorobets, Plane structures and billiards in rational polygons: the Veech alternative, Uspekhi Mat. Nauk 51 (1996), no. 5(311), 3–42 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 5, 779–817. MR 1436653, DOI 10.1070/RM1996v051n05ABEH002993 [W]W S. Wewers, Construction of Hurwitz Spaces. Ph.D. Dissertation, Essen University, Germany, 1998. http://www.math.uni-bonn.de/people/wewers/diss.ps
Additional Information
- Pascal Hubert
- Affiliation: Institut de Mathématiques de Luminy, 163 av de Luminy, case 907, 13288 Marseille cedex 09, France
- Address at time of publication: Laboratoire d’Analyse Topologie et Probabilité, Case Cours A, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
- Email: hubert@cmi.univ-mrs.fr
- Thomas A. Schmidt
- Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
- MR Author ID: 307915
- Email: toms@math.orst.edu
- Received by editor(s): July 29, 2004
- Received by editor(s) in revised form: November 11, 2005
- Published electronically: January 10, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 10 (2006), 1-20
- MSC (2000): Primary 30F35, 11J70
- DOI: https://doi.org/10.1090/S1088-4173-06-00120-2
- MathSciNet review: 2192855