The existence of quasimeromorphic mappings in dimension 3
HTML articles powered by AMS MathViewer
- by Emil Saucan PDF
- Conform. Geom. Dyn. 10 (2006), 21-40 Request permission
Abstract:
We prove that a Kleinian group $G$ acting on $\mathbb {H}^{3}$ admits a non-constant $G$-automorphic function, even if it has torsion elements, provided that the orders of the elliptic elements are uniformly bounded. This is accomplished by developing a method for meshing distinct fat triangulations which is fatness preserving. We further show how to adapt the proof to higher dimensions.References
-
[Ab]ab W. Abikoff, Kleinian Groups, lecture notes, The Technion—Israel Institute of Technology, Haifa, Israel, 1996–1997.
[Al]al J.W. Alexander, Note on Riemmann spaces, Bull. Amer. Math. Soc. 26 (1920), 370–372.
- B. N. Apanasov, Kleinian groups in space, Sibirsk. Mat. Ž. 16 (1975), no. 5, 891–898, 1129 (Russian). MR 0404474
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- Marcel Berger, Geometry. I, Universitext, Springer-Verlag, Berlin, 1987. Translated from the French by M. Cole and S. Levy. MR 882541, DOI 10.1007/978-3-540-93815-6
- B. H. Bowditch and G. Mess, A $4$-dimensional Kleinian group, Trans. Amer. Math. Soc. 344 (1994), no. 1, 391–405. MR 1240944, DOI 10.1090/S0002-9947-1994-1240944-6
- Robert Brooks and J. Peter Matelski, Collars in Kleinian groups, Duke Math. J. 49 (1982), no. 1, 163–182. MR 650375
- Stewart S. Cairns, On the triangulation of regular loci, Ann. of Math. (2) 35 (1934), no. 3, 579–587. MR 1503181, DOI 10.2307/1968752
- Stewart S. Cairns, Polyhedral approximations to regular loci, Ann. of Math. (2) 37 (1936), no. 2, 409–415. MR 1503287, DOI 10.2307/1968452
- Stewart S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389–390. MR 149491, DOI 10.1090/S0002-9904-1961-10631-9
- Jeff Cheeger, Werner Müller, and Robert Schrader, On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), no. 3, 405–454. MR 734226, DOI 10.1007/BF01210729
- H. S. M. Coxeter, Regular polytopes, 2nd ed., The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151873
- D. A. Derevnin and A. D. Mednykh, Geometric properties of discrete groups acting with fixed points in a Lobachevskiĭ space, Dokl. Akad. Nauk SSSR 300 (1988), no. 1, 27–30 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 3, 614–617. MR 948799
- Mark Feighn and Geoffrey Mess, Conjugacy classes of finite subgroups of Kleinian groups, Amer. J. Math. 113 (1991), no. 1, 179–188. MR 1087807, DOI 10.2307/2374827
- F. W. Gehring and G. J. Martin, Commutators, collars and the geometry of Möbius groups, J. Anal. Math. 63 (1994), 175–219. MR 1269219, DOI 10.1007/BF03008423
- F. W. Gehring and G. J. Martin, On the Margulis constant for Kleinian groups. I, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 439–462. MR 1404096
- F. W. Gehring, C. Maclachlan, G. J. Martin, and A. W. Reid, Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3611–3643. MR 1433117, DOI 10.1090/S0002-9947-97-01989-2
- Emily Hamilton, Geometrical finiteness for hyperbolic orbifolds, Topology 37 (1998), no. 3, 635–657. MR 1604903, DOI 10.1016/S0040-9383(97)00043-8
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 427627, DOI 10.2307/2373814
- M. È. Kapovich and L. D. Potyagaĭlo, On the absence of finiteness theorems of Ahlfors and Sullivan for Kleinian groups in higher dimensions, Sibirsk. Mat. Zh. 32 (1991), no. 2, 61–73, 212 (Russian); English transl., Siberian Math. J. 32 (1991), no. 2, 227–237. MR 1138441, DOI 10.1007/BF00972769
- Michael Kapovich and Leonid Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991), no. 1, 83–91. MR 1114093, DOI 10.1016/0166-8641(91)90060-Y [Med]med A.D. Mednikh, Automorphism groups of the three-dimensional hyperbolic manifolds, Soviet Math. Dokl. 32(3) (1985), 633–636. [Mor]mor J.W. Morgan, On Thurston’s Uniformization Theorem for Three-Dimensional Manifolds, in The Smith Conjecture (Morgan, J.W. and Bass, H. ed.), Academic Press, NY, 1984, 37–126.
- Olli Martio and Uri Srebro, Automorphic quasimeromorphic mappings in $R^{n}$, Acta Math. 135 (1975), no. 3-4, 221–247. MR 435388, DOI 10.1007/BF02392020
- O. Martio and U. Srebro, On the existence of automorphic quasimeromorphic mappings in $\textbf {R}^{n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 123–130. MR 0585312, DOI 10.5186/aasfm.1977.0317
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Volker Mayer, Uniformly quasiregular mappings of Lattès type, Conform. Geom. Dyn. 1 (1997), 104–111. MR 1482944, DOI 10.1090/S1088-4173-97-00013-1
- James R. Munkres, Elementary differential topology, Revised edition, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1966. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0198479
- Peter J. Nicholls and Peter L. Waterman, The boundary of convex fundamental domains of Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 1, 11–25. MR 1050778, DOI 10.5186/aasfm.1990.15
- Kirsi Peltonen, On the existence of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 85 (1992), 48. MR 1165363
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4 [S1]s1 E. Saucan, The Existence of Quasimeromorphic Mappings, Ann. Acad. Sci. Fenn., Ser A I Math, 31, (2006), 131–142. [S2]s2 E. Saucan, Note on a theorem of Munkres, Mediterr. j. math 2(2) (2005), 215–229. [S3]s3 E. Saucan, in preparation.
- D. M. Y. Sommerville, An introduction to the geometry of $n$ dimensions, Dover Publications, Inc., New York, 1958. MR 0100239
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Boston, Mass., 1975. MR 0394452
- Uri Srebro, Non-existence of quasimeromorphic automorphic mappings, Analysis and topology, World Sci. Publ., River Edge, NJ, 1998, pp. 647–651. MR 1667838 [SA]sa E. Saucan and E. Apleboim, Quasiconformal Fold Elimination for Seaming and Tomography, in preparation.
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- Pekka Tukia, Automorphic quasimeromorphic mappings for torsionless hyperbolic groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 545–560. MR 802519, DOI 10.5186/aasfm.1985.1061
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- J. H. C. Whitehead, On $C^1$-complexes, Ann. of Math. (2) 41 (1940), 809–824. MR 2545, DOI 10.2307/1968861
Additional Information
- Emil Saucan
- Affiliation: Departments of Mathematics and Electrical Engineering, Technion, Haifa, Israel
- Email: semil@tx.technion.ac.il, semil@ee.technion.ac.il
- Received by editor(s): December 1, 2003
- Received by editor(s) in revised form: January 20, 2006
- Published electronically: March 1, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 10 (2006), 21-40
- MSC (2000): Primary 30C65, 57R05, 57M60
- DOI: https://doi.org/10.1090/S1088-4173-06-00111-1
- MathSciNet review: 2206314
Dedicated: For Meir, who insisted