Some rational maps whose Julia sets are not locally connected
HTML articles powered by AMS MathViewer
- by P. Roesch
- Conform. Geom. Dyn. 10 (2006), 125-135
- DOI: https://doi.org/10.1090/S1088-4173-06-00139-1
- Published electronically: July 6, 2006
- PDF | Request permission
Abstract:
We describe examples of rational maps which are not topologically conjugate to a polynomial and whose Julia sets are connected but not locally connected.References
- James W. Anderson and Bernard Maskit, On the local connectivity of limit set of Kleinian groups, Complex Variables Theory Appl. 31 (1996), no. 2, 177–183. MR 1423249, DOI 10.1080/17476939608814957 [DoHu1]DH A. Douady, J. H. Hubbard, Etude dynamique des polynômes complexes, Publications mathématiques d’Orsay 1984.
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Adrien Douady, Disques de Siegel et anneaux de Herman, Astérisque 152-153 (1987), 4, 151–172 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. MR 936853
- Étienne Ghys, Transformations holomorphes au voisinage d’une courbe de Jordan, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 16, 385–388 (French, with English summary). MR 748928 [He]He M. Herman, Conjugaison quasi-symétrique des difféomorphismes du cercle à desrotations et applications aux disques singuliers de Siegel, I., manuscript, http://www. math.kyoto-u.ac.jp/mitsu/Herman/qsconj2
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- John Milnor, Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67–116. MR 1765085
- Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 7 (1994), no. 3, 539–588. MR 1257060, DOI 10.1090/S0894-0347-1994-1257060-3
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001), no. 1, 35–91. MR 1859018, DOI 10.1007/PL00005809 [Ro]Ro P. Roesch, On local connectivity for the Julia set of rational maps, Ann. Math. (To appear).
- Dan Erik Krarup Sørensen, Describing quadratic Cremer point polynomials by parabolic perturbations, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 739–758. MR 1631760, DOI 10.1017/S0143385798108301
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308 [Sh]Sh M. Shishikura, The connectivity of the Julia set of rational maps and Fixed points, Preprint IHES, Bures-sur-Yvette, 1992.
- Lei Tan and Yongcheng Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39 (1996), no. 1, 39–47. MR 1397233
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028 [Za]Za S. Zakeri , In Shahyad, a volume dedicated to Siavash Shahshahani on the occasion of his 60th birthday, 2002.
Bibliographic Information
- P. Roesch
- Affiliation: UMR Paul Painleve, University of Lille 1, Cité scientifique - Bâtiment M2, 69655 Villeneuve d’Ascq Cedex, France
- Email: roesch@math.univ-lille1.fr
- Received by editor(s): May 11, 2005
- Received by editor(s) in revised form: April 7, 2006
- Published electronically: July 6, 2006
- Additional Notes: Research partially supported by the Morningside Center of Mathematics in Beijing
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 10 (2006), 125-135
- MSC (2000): Primary 37F50; Secondary 37F10
- DOI: https://doi.org/10.1090/S1088-4173-06-00139-1
- MathSciNet review: 2237276