Uniform spaces and weak slice spaces
HTML articles powered by AMS MathViewer
- by Stephen M. Buckley and David A. Herron
- Conform. Geom. Dyn. 11 (2007), 191-206
- DOI: https://doi.org/10.1090/S1088-4173-07-00164-6
- Published electronically: September 24, 2007
- PDF | Request permission
Abstract:
We characterize uniform spaces in terms of a slice condition. We also establish the Gehring–Osgood–Väisälä theorem for uniformity in the metric space context.References
- Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. MR 1829896
- Stephen M. Buckley, Slice conditions and their applications, Future trends in geometric function theory, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 92, Univ. Jyväskylä, Jyväskylä, 2003, pp. 63–76. MR 2058111
- Stephen M. Buckley, Quasiconformal images of Hölder domains, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 21–42. MR 2041697
- S. Buckley and D.A. Herron, Uniform domains and capacity, Israel J. Math 158 (2007), 129–157.
- Stephen M. Buckley and Julann O’Shea, Weighted Trudinger-type inequalities, Indiana Univ. Math. J. 48 (1999), no. 1, 85–114. MR 1722194, DOI 10.1512/iumj.1999.48.1592
- Stephen M. Buckley and Alexander Stanoyevitch, Weak slice conditions, product domains, and quasiconformal mappings, Rev. Mat. Iberoamericana 17 (2001), no. 3, 607–642. MR 1900897, DOI 10.4171/RMI/306
- Stephen M. Buckley and Alexander Stanoyevitch, Distinguishing properties of weak slice conditions, Conform. Geom. Dyn. 7 (2003), 49–75. MR 1992037, DOI 10.1090/S1088-4173-03-00084-5
- Luca Capogna, Nicola Garofalo, and Duy-Minh Nhieu, Examples of uniform and NTA domains in Carnot groups, Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999) Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000, pp. 103–121. MR 1847513
- Luca Capogna and Puqi Tang, Uniform domains and quasiconformal mappings on the Heisenberg group, Manuscripta Math. 86 (1995), no. 3, 267–281. MR 1323792, DOI 10.1007/BF02567994
- F. W. Gehring, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-Verein. 89 (1987), no. 2, 88–103. MR 880189
- F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181–206. MR 833411, DOI 10.1007/BF02792549
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- A. V. Greshnov, On uniform and NTA-domains on Carnot groups, Sibirsk. Mat. Zh. 42 (2001), no. 5, 1018–1035, ii (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 5, 851–864. MR 1861631, DOI 10.1023/A:1011955308660
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. MR 138225, DOI 10.1002/cpa.3160140316
- Pekka Koskela, Removable sets for Sobolev spaces, Ark. Mat. 37 (1999), no. 2, 291–304. MR 1714767, DOI 10.1007/BF02412216
- O. Martio, Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 197–205. MR 595191, DOI 10.5186/aasfm.1980.0517
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- Jussi Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. MR 927080, DOI 10.2748/tmj/1178228081
- Jussi Väisälä, Free quasiconformality in Banach spaces. II, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 255–310. MR 1139798, DOI 10.5186/aasfm.1991.1629
- Jussi Väisälä, Exhaustions of John domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 47–57. MR 1246886
- Jussi Väisälä, Relatively and inner uniform domains, Conform. Geom. Dyn. 2 (1998), 56–88. MR 1637079, DOI 10.1090/S1088-4173-98-00022-8
- —, The free quasiworld. Freely quasiconformal and related maps in Banach spaces., Quasiconformal Geometry and Dynamics (Lublin, 1996) (Warsaw), vol. 48, Inst. Math., Polish of Academy Sciences, Banach Center Publ., 1999, pp. 55–118.
Bibliographic Information
- Stephen M. Buckley
- Affiliation: Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Email: sbuckley@maths.nuim.ie
- David A. Herron
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- MR Author ID: 85095
- Email: david.herron@math.uc.edu
- Received by editor(s): January 9, 2007
- Published electronically: September 24, 2007
- Additional Notes: The first author was supported in part by Enterprise Ireland and Science Foundation Ireland. Both authors were supported by the Charles Phelps Taft Memorial Fund.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 191-206
- MSC (2000): Primary 30C65; Secondary 51F99
- DOI: https://doi.org/10.1090/S1088-4173-07-00164-6
- MathSciNet review: 2346216