## Subgroups of some Fuchsian groups defined by two linear congruences

HTML articles powered by AMS MathViewer

- by Omer Yayenie PDF
- Conform. Geom. Dyn.
**11**(2007), 271-287 Request permission

## Abstract:

In this article we define a new family of subgroups of Fuchsian groups $\mathcal {H}(\sqrt {m})$, for a squarefree positive integer $m$, and calculate their index in $\mathcal {H}(\sqrt {m})$ and their parabolic class number. Moreover, we will show that the index of these subgroups is closely related to the solvability of a quadratic congruence $x^2\equiv m(\textrm {mod }n)$ and the number of inequivalent solutions of a quadratic congruence $x^2\equiv 1(\textrm {mod }n)$. Finally, we will show that the results obtained by Yilmaz and Keskin [Acta Math. Sin**25**(2005), 215–222] are immediate corollaries of one of the main theorems of this article.

## References

- Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 - İ. N. Cangül and D. Singerman,
*Normal subgroups of Hecke groups and regular maps*, Math. Proc. Cambridge Philos. Soc.**123**(1998), no. 1, 59–74. MR**1474865**, DOI 10.1017/S0305004197002004 - David S. Dummit and Richard M. Foote,
*Abstract algebra*, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. MR**1138725** - J. I. Hutchinson,
*On a class of automorphic functions*, Trans. Amer. Math. Soc.**3**(1902), no. 1, 1–11. MR**1500582**, DOI 10.1090/S0002-9947-1902-1500582-5 - Henryk Iwaniec,
*Topics in classical automorphic forms*, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR**1474964**, DOI 10.1090/gsm/017 - Refik Keskin,
*On the parabolic class numbers of some Fuchsian groups*, Note Mat.**19**(1999), no. 2, 275–283 (2001). MR**1816881** - Refik Keskin,
*On the parabolic class number of some subgroups of Hecke groups*, Turkish J. Math.**22**(1998), no. 2, 199–205. MR**1651026** - M. I. Knopp and M. Newman,
*Congruence subgroups of positive genus of the modular group*, Illinois J. Math.**9**(1965), 577–583. MR**181675** - Kurt Ludwick,
*Congruence restricted modular forms*, Ramanujan J.**9**(2005), no. 3, 341–356. MR**2173493**, DOI 10.1007/s11139-005-1872-7 - Toshitsune Miyake,
*Modular forms*, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR**1021004**, DOI 10.1007/3-540-29593-3 - I. Niven, H. S. Zuckerman, and H. L. Montogomery, An Introduction To The Theory Of Numbers,
*John Wiley & Sons, New York*(1991). - Robert A. Rankin,
*The modular group and its subgroups*, Ramanujan Institute, Madras, 1969. MR**0265289** - David Rosen,
*A class of continued fractions associated with certain properly discontinuous groups*, Duke Math. J.**21**(1954), 549–563. MR**65632** - David Rosen,
*Research Problems: Continued Fractions in Algebraic Number Fields*, Amer. Math. Monthly**84**(1977), no. 1, 37–39. MR**1538246**, DOI 10.2307/2318305 - David Rosen,
*The substitutions of Hecke group $\Gamma (2\,\textrm {cos}(\pi /5))$*, Arch. Math. (Basel)**46**(1986), no. 6, 533–538. MR**849858**, DOI 10.1007/BF01195021 - David Rosen and Thomas A. Schmidt,
*Hecke groups and continued fractions*, Bull. Austral. Math. Soc.**46**(1992), no. 3, 459–474. MR**1190349**, DOI 10.1017/S0004972700012120 - Nihal Yılmaz Özgür and İ. Naci Cangül,
*On the group structure and parabolic points of the Hecke group $H(\lambda )$*, Proc. Estonian Acad. Sci. Phys. Math.**51**(2002), no. 1, 35–46 (English, with English and Estonian summaries). MR**1906718** - Yilmaz Özgür Nihal and Keskhin Refik,
*Proof of a conjecture related to the parabolic class numbers of some Fuchsian groups*, Acta Math. Sci. Ser. B (Engl. Ed.)**25**(2005), no. 2, 215–222. MR**2133061**, DOI 10.1016/S0252-9602(17)30278-3 - John Wesley Young,
*On the group of sign $(0,3;2,4,\infty )$ and the functions belonging to it*, Trans. Amer. Math. Soc.**5**(1904), no. 1, 81–104. MR**1500662**, DOI 10.1090/S0002-9947-1904-1500662-6 - Jürgen Wolfart,
*Eine Bemerkung über Heckes Modulgruppen*, Arch. Math. (Basel)**29**(1977), no. 1, 72–77 (German). MR**453643**, DOI 10.1007/BF01220377

## Additional Information

**Omer Yayenie**- Affiliation: Department of Mathematics and Statistics, Murray State University, Murray, Kentucky 42071
- Email: omer.yayenie@murraystate.edu
- Received by editor(s): March 26, 2007
- Published electronically: December 18, 2007
- © Copyright 2007 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**11**(2007), 271-287 - MSC (2000): Primary 11F06, 19B37; Secondary 20H05, 20H10
- DOI: https://doi.org/10.1090/S1088-4173-07-00172-5
- MathSciNet review: 2365641