Nagata dimension and quasi-Möbius maps
HTML articles powered by AMS MathViewer
- by Xiangdong Xie
- Conform. Geom. Dyn. 12 (2008), 1-9
- DOI: https://doi.org/10.1090/S1088-4173-08-00173-2
- Published electronically: January 22, 2008
- PDF | Request permission
Abstract:
We show that quasi-Möbius maps preserve the Nagata dimension of metric spaces, generalizing a result of U. Lang and T. Schlichenmaier (Int. Math. Res. Not. 2005, no. 58, 3625–3655).References
- Patrice Assouad, Sur la distance de Nagata, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 1, 31–34 (French, with English summary). MR 651069
- S. V. Buyalo, Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17 (2005), no. 2, 70–95 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 2, 267–283. MR 2159584, DOI 10.1090/S1061-0022-06-00903-4
- N. Brodskiy, J. Dydak, M. Levin, A. Mitra, Hurewicz Theorem for Assouad-Nagata dimension, preprint.
- S. Buckley, D. Herron, X. Xie, Metric space inversions, quasihyperbolic distance, and uniform spaces, to appear in Indiana University Math. Jour.
- Mario Bonk and Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), no. 1, 81–106. MR 1949785
- S. V. Buyalo and N. D. Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007), no. 1, 60–92 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 1, 45–65. MR 2319510, DOI 10.1090/S1061-0022-07-00985-5
- S. Buyalo, V. Schroeder, A product of trees as universal space for hyperbolic groups, preprint.
- A. N. Dranishnikov, On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc. 355 (2003), no. 1, 155–167. MR 1928082, DOI 10.1090/S0002-9947-02-03115-X
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. MR 2200122, DOI 10.1155/IMRN.2005.3625
- Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218–234. MR 801295, DOI 10.1007/BF02790198
- Jussi Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996) Banach Center Publ., vol. 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 55–118. MR 1709974
Bibliographic Information
- Xiangdong Xie
- Affiliation: Department of Mathematical Sciences, Georgia Southern University, Statesboro, Georgia 30460
- MR Author ID: 624250
- Email: xxie@georgiasouthern.edu
- Received by editor(s): January 23, 2007
- Published electronically: January 22, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 12 (2008), 1-9
- MSC (2000): Primary 54F45, 30C65
- DOI: https://doi.org/10.1090/S1088-4173-08-00173-2
- MathSciNet review: 2372759