Global conformal Assouad dimension in the Heisenberg group
HTML articles powered by AMS MathViewer
- by Jeremy T. Tyson
- Conform. Geom. Dyn. 12 (2008), 32-57
- DOI: https://doi.org/10.1090/S1088-4173-08-00177-X
- Published electronically: March 6, 2008
- PDF | Request permission
Abstract:
We study global conformal Assouad dimension in the Heisenberg group $\mathbb {H}^n$. For each $\alpha \in \{0\}\cup [1,2n+2]$, there is a bounded set in $\mathbb {H}^n$ with Assouad dimension $\alpha$ whose Assouad dimension cannot be lowered by any quasiconformal map of $\mathbb {H}^n$. On the other hand, for any set $S$ in $\mathbb {H}^n$ with Assouad dimension strictly less than one, the infimum of the Assouad dimensions of sets $F(S)$, taken over all quasiconformal maps $F$ of $\mathbb {H}^n$, equals zero. We also consider dilatation-dependent bounds for quasiconformal distortion of Assouad dimension. The proofs use recent advances in self-similar fractal geometry and tilings in $\mathbb {H}^n$ and regularity of the Carnot–Carathéodory distance from smooth hypersurfaces.References
- Nicola Arcozzi and Fausto Ferrari, Metric normal and distance function in the Heisenberg group, Math. Z. 256 (2007), no. 3, 661–684. MR 2299576, DOI 10.1007/s00209-006-0098-8
- Arcozzi, N., Ferrari, F., and Montefalcone, F., in preparation.
- Patrice Assouad, Plongements lipschitziens dans $\textbf {R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429–448 (French, with English summary). MR 763553, DOI 10.24033/bsmf.1997
- Zoltán M. Balogh, Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group, J. Anal. Math. 83 (2001), 289–312. MR 1828495, DOI 10.1007/BF02790265
- Zoltán M. Balogh, Regula Hoefer-Isenegger, and Jeremy T. Tyson, Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 621–651. MR 2237461, DOI 10.1017/S0143385705000593
- Zoltán M. Balogh and Jeremy T. Tyson, Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group, Proc. London Math. Soc. (3) 91 (2005), no. 1, 153–183. MR 2149533, DOI 10.1112/S0024611504015205
- Balogh, Z. M., Tyson, J. T., and Warhurst, B., Gromov’s dimension comparison problem on Carnot groups. C. R. Math. Acad. Sci. Paris 346, (2008), 135–138.
- Balogh, Z. M., Tyson, J. T., and Warhurst, B., Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups. Preprint, 2007.
- Christopher J. Bishop, Quasiconformal mappings which increase dimension, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 397–407. MR 1724076
- Christopher J. Bishop and Jeremy T. Tyson, Conformal dimension of the antenna set, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3631–3636. MR 1860497, DOI 10.1090/S0002-9939-01-05982-2
- Christopher J. Bishop and Jeremy T. Tyson, Locally minimal sets for conformal dimension, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 361–373. MR 1833245
- Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246. MR 2116315, DOI 10.2140/gt.2005.9.219
- Marc Bourdon, Au bord de certains polyèdres hyperboliques, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 119–141 (French, with English and French summaries). MR 1324127, DOI 10.5802/aif.1450
- M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245–268 (French, with English and French summaries). MR 1445387, DOI 10.1007/PL00001619
- Luca Capogna, Regularity of quasi-linear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), no. 9, 867–889. MR 1459590, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
- Luca Capogna, Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263–295. MR 1679786, DOI 10.1007/s002080050261
- Luca Capogna and Michael Cowling, Conformality and $Q$-harmonicity in Carnot groups, Duke Math. J. 135 (2006), no. 3, 455–479. MR 2272973, DOI 10.1215/S0012-7094-06-13532-9
- Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007. MR 2312336, DOI 10.1007/978-3-7643-8133-2
- Luca Capogna and Nicola Garofalo, Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces, J. Geom. Anal. 16 (2006), no. 3, 455–497. MR 2250055, DOI 10.1007/BF02922062
- K. J. Falconer and R. Daniel Mauldin, Fubini-type theorems for general measure constructions, Mathematika 47 (2000), no. 1-2, 251–265 (2002). MR 1924502, DOI 10.1112/S0025579300015862
- F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512. MR 324028, DOI 10.1112/jlms/s2-6.3.504
- Götz Gelbrich, Self-similar periodic tilings on the Heisenberg group, J. Lie Theory 4 (1994), no. 1, 31–37. MR 1326950
- Juha Heinonen, Calculus on Carnot groups, Fall School in Analysis (Jyväskylä, 1994) Report, vol. 68, Univ. Jyväskylä, Jyväskylä, 1995, pp. 1–31. MR 1351042, DOI 10.1530/jrf.0.0680001
- Juha Heinonen, A capacity estimate on Carnot groups, Bull. Sci. Math. 119 (1995), no. 5, 475–484. MR 1354248
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Juha Heinonen and Stephen Semmes, Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn. 1 (1997), 1–12 (electronic). MR 1452413, DOI 10.1090/S1088-4173-97-00012-X
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- S. Keith and T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), no. 6, 1278–1321. MR 2135168, DOI 10.1007/s00039-004-0492-5
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338. MR 788413, DOI 10.1007/BF01388609
- A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384, DOI 10.1006/aima.1995.1017
- Leonid V. Kovalev, Conformal dimension does not assume values between zero and one, Duke Math. J. 134 (2006), no. 1, 1–13. MR 2239342, DOI 10.1215/S0012-7094-06-13411-7
- Jeffrey C. Lagarias and Yang Wang, Self-affine tiles in $\textbf {R}^n$, Adv. Math. 121 (1996), no. 1, 21–49. MR 1399601, DOI 10.1006/aima.1996.0045
- Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23–76. MR 1608518
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15–23. MR 14397, DOI 10.1017/s0305004100022684
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Pierre Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 127–130 (French, with English summary). MR 676380
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
- Robert S. Strichartz, Self-similarity on nilpotent Lie groups, Geometric analysis (Philadelphia, PA, 1991) Contemp. Math., vol. 140, Amer. Math. Soc., Providence, RI, 1992, pp. 123–157. MR 1197594, DOI 10.1090/conm/140/1197594
- Robert S. Strichartz, Self-similarity in harmonic analysis, J. Fourier Anal. Appl. 1 (1994), no. 1, 1–37. MR 1307067, DOI 10.1007/s00041-001-4001-z
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
- Jeremy T. Tyson, Sets of minimal Hausdorff dimension for quasiconformal maps, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3361–3367. MR 1676353, DOI 10.1090/S0002-9939-00-05433-2
- Jeremy T. Tyson, Lowering the Assouad dimension by quasisymmetric mappings, Illinois J. Math. 45 (2001), no. 2, 641–656. MR 1878624
- Jeremy T. Tyson and Jang-Mei Wu, Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoam. 22 (2006), no. 1, 205–258. MR 2268118, DOI 10.4171/RMI/454
- Jussi Väisälä, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987), no. 2, 525–533. MR 869219, DOI 10.1090/S0002-9947-1987-0869219-8
Bibliographic Information
- Jeremy T. Tyson
- Affiliation: Department of Mathematics, University of Illinois, West Green Street, Urbana, Illinois 61801
- MR Author ID: 625886
- Email: tyson@math.uiuc.edu
- Received by editor(s): August 27, 2007
- Published electronically: March 6, 2008
- Additional Notes: Research supported by NSF grant DMS 0555869
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 12 (2008), 32-57
- MSC (2000): Primary 30C65; Secondary 28A78, 43A80
- DOI: https://doi.org/10.1090/S1088-4173-08-00177-X
- MathSciNet review: 2385407