## Möbius invariant metrics bilipschitz equivalent to the hyperbolic metric

HTML articles powered by AMS MathViewer

- by David A. Herron, William Ma and David Minda PDF
- Conform. Geom. Dyn.
**12**(2008), 67-96 Request permission

## Abstract:

We study three Möbius invariant metrics, and three affine invariant analogs, all of which are bilipschitz equivalent to the Poincaré hyperbolic metric. We exhibit numerous illustrative examples.## References

- Lars V. Ahlfors,
*Conformal invariants: topics in geometric function theory*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**0357743** - Lars V. Ahlfors,
*Complex analysis. An introduction to the theory of analytic functions of one complex variable*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR**0054016** - Dimitrios Betsakos,
*Estimation of the hyperbolic metric by using the punctured plane*, Math. Z.**259**(2008), no. 1, 187–196. MR**2377748**, DOI 10.1007/s00209-007-0218-0 - A. F. Beardon and Ch. Pommerenke,
*The Poincaré metric of plane domains*, J. London Math. Soc. (2)**18**(1978), no. 3, 475–483. MR**518232**, DOI 10.1112/jlms/s2-18.3.475 - C. Carathéodory,
*Theory of functions of a complex variable*, $2^\textrm {nd}$ English ed., vol. 2, Chelsea Publ. Co., New York, 1960. - Jacqueline Ferrand,
*A characterization of quasiconformal mappings by the behaviour of a function of three points*, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 110–123. MR**982077**, DOI 10.1007/BFb0081247 - Frederick P. Gardiner and Nikola Lakic,
*Comparing Poincaré densities*, Ann. of Math. (2)**154**(2001), no. 2, 245–267. MR**1865971**, DOI 10.2307/3062097 - Maurice Heins,
*On a class of conformal metrics*, Nagoya Math. J.**21**(1962), 1–60. MR**143901**, DOI 10.1017/S002776300002376X - Dennis A. Hejhal,
*Universal covering maps for variable regions*, Math. Z.**137**(1974), 7–20. MR**349989**, DOI 10.1007/BF01213931 - Joachim A. Hempel,
*The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky*, J. London Math. Soc. (2)**20**(1979), no. 3, 435–445. MR**561135**, DOI 10.1112/jlms/s2-20.3.435 - D.A. Herron, Z. Ibragimov, and D. Minda,
*Geodesics and curvature of Möbius invariant metrics*, Rocky Mountain J. Math. (2008), vol. 38, no. 3, pp. 891–921. - James A. Jenkins,
*On explicit bounds in Landau’s theorem. II*, Canadian J. Math.**33**(1981), no. 3, 559–562. MR**627642**, DOI 10.4153/CJM-1981-045-1 - David Minda,
*Lower bounds for the hyperbolic metric in convex regions*, Rocky Mountain J. Math.**13**(1983), no. 1, 61–69. MR**692577**, DOI 10.1216/RMJ-1983-13-1-61 - David Minda,
*Inequalities for the hyperbolic metric and applications to geometric function theory*, Complex analysis, I (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1275, Springer, Berlin, 1987, pp. 235–252. MR**922304**, DOI 10.1007/BFb0078356 - Zeev Nehari,
*Conformal mapping*, Dover Publications, Inc., New York, 1975. Reprinting of the 1952 edition. MR**0377031** - Ch. Pommerenke,
*Uniformly perfect sets and the Poincaré metric*, Arch. Math. (Basel)**32**(1979), no. 2, 192–199. MR**534933**, DOI 10.1007/BF01238490 - Ch. Pommerenke,
*On uniformly perfect sets and Fuchsian groups*, Analysis**4**(1984), no. 3-4, 299–321. MR**780609**, DOI 10.1524/anly.1984.4.34.299 - A. Yu. Solynin,
*Polarization and functional inequalities*, Algebra i Analiz**8**(1996), no. 6, 148–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**8**(1997), no. 6, 1015–1038. MR**1458141** - A. Yu. Solynin,
*Ordering of sets, hyperbolic metric, and harmonic measure*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**237**(1997), no. Anal. Teor. Chisel i Teor. Funkts. 14, 129–147, 230 (Russian, with Russian summary); English transl., J. Math. Sci. (New York)**95**(1999), no. 3, 2256–2266. MR**1691288**, DOI 10.1007/BF02172470 - A. Yu. Solynin,
*Radial projection and the Poincaré metric*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**237**(1997), no. Anal. Teor. Chisel i Teor. Funkts. 14, 148–160, 230 (Russian, with Russian summary); English transl., J. Math. Sci. (New York)**95**(1999), no. 3, 2267–2275. MR**1691289**, DOI 10.1007/BF02172471 - A. Yu. Solynin and M. Vuorinen,
*Estimates for the hyperbolic metric of the punctured plane and applications*, Israel J. Math.**124**(2001), 29–60. MR**1856503**, DOI 10.1007/BF02772606 - Toshiyuki Sugawa and Matti Vuorinen,
*Some inequalities for the Poincaré metric of plane domains*, Math. Z.**250**(2005), no. 4, 885–906. MR**2180380**, DOI 10.1007/s00209-005-0782-0

## Additional Information

**David A. Herron**- Affiliation: Department of Mathematical Sciences, 839 Old Chemistry Building, P.O. Box 210025, Cincinnati, Ohio 45221-0025
- MR Author ID: 85095
- Email: David.Herron@math.UC.edu
**William Ma**- Affiliation: School of Integrated Studies, Pennsylvania College of Technology, Williamsport, Pennsylvania 17701
- Email: wma@pct.edu
**David Minda**- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- Email: david.minda@math.uc.edu
- Received by editor(s): November 30, 2007
- Published electronically: June 10, 2008
- Additional Notes: The first and third authors were supported by the Charles Phelps Taft Research Center.
- © Copyright 2008 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**12**(2008), 67-96 - MSC (2000): Primary 30F45; Secondary 30C55, 30F30
- DOI: https://doi.org/10.1090/S1088-4173-08-00178-1
- MathSciNet review: 2410919

Dedicated: Dedicated to Roger Barnard on the occasion of his $65^{th}$ birthday.