Möbius invariant metrics bilipschitz equivalent to the hyperbolic metric
HTML articles powered by AMS MathViewer
- by David A. Herron, William Ma and David Minda
- Conform. Geom. Dyn. 12 (2008), 67-96
- DOI: https://doi.org/10.1090/S1088-4173-08-00178-1
- Published electronically: June 10, 2008
- PDF | Request permission
Abstract:
We study three Möbius invariant metrics, and three affine invariant analogs, all of which are bilipschitz equivalent to the Poincaré hyperbolic metric. We exhibit numerous illustrative examples.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Lars V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0054016
- Dimitrios Betsakos, Estimation of the hyperbolic metric by using the punctured plane, Math. Z. 259 (2008), no. 1, 187–196. MR 2377748, DOI 10.1007/s00209-007-0218-0
- A. F. Beardon and Ch. Pommerenke, The Poincaré metric of plane domains, J. London Math. Soc. (2) 18 (1978), no. 3, 475–483. MR 518232, DOI 10.1112/jlms/s2-18.3.475
- C. Carathéodory, Theory of functions of a complex variable, $2^\textrm {nd}$ English ed., vol. 2, Chelsea Publ. Co., New York, 1960.
- Jacqueline Ferrand, A characterization of quasiconformal mappings by the behaviour of a function of three points, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 110–123. MR 982077, DOI 10.1007/BFb0081247
- Frederick P. Gardiner and Nikola Lakic, Comparing Poincaré densities, Ann. of Math. (2) 154 (2001), no. 2, 245–267. MR 1865971, DOI 10.2307/3062097
- Maurice Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60. MR 143901, DOI 10.1017/S002776300002376X
- Dennis A. Hejhal, Universal covering maps for variable regions, Math. Z. 137 (1974), 7–20. MR 349989, DOI 10.1007/BF01213931
- Joachim A. Hempel, The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. (2) 20 (1979), no. 3, 435–445. MR 561135, DOI 10.1112/jlms/s2-20.3.435
- D.A. Herron, Z. Ibragimov, and D. Minda, Geodesics and curvature of Möbius invariant metrics, Rocky Mountain J. Math. (2008), vol. 38, no. 3, pp. 891–921.
- James A. Jenkins, On explicit bounds in Landau’s theorem. II, Canadian J. Math. 33 (1981), no. 3, 559–562. MR 627642, DOI 10.4153/CJM-1981-045-1
- David Minda, Lower bounds for the hyperbolic metric in convex regions, Rocky Mountain J. Math. 13 (1983), no. 1, 61–69. MR 692577, DOI 10.1216/RMJ-1983-13-1-61
- David Minda, Inequalities for the hyperbolic metric and applications to geometric function theory, Complex analysis, I (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1275, Springer, Berlin, 1987, pp. 235–252. MR 922304, DOI 10.1007/BFb0078356
- Zeev Nehari, Conformal mapping, Dover Publications, Inc., New York, 1975. Reprinting of the 1952 edition. MR 0377031
- Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32 (1979), no. 2, 192–199. MR 534933, DOI 10.1007/BF01238490
- Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis 4 (1984), no. 3-4, 299–321. MR 780609, DOI 10.1524/anly.1984.4.34.299
- A. Yu. Solynin, Polarization and functional inequalities, Algebra i Analiz 8 (1996), no. 6, 148–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 6, 1015–1038. MR 1458141
- A. Yu. Solynin, Ordering of sets, hyperbolic metric, and harmonic measure, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), no. Anal. Teor. Chisel i Teor. Funkts. 14, 129–147, 230 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 95 (1999), no. 3, 2256–2266. MR 1691288, DOI 10.1007/BF02172470
- A. Yu. Solynin, Radial projection and the Poincaré metric, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), no. Anal. Teor. Chisel i Teor. Funkts. 14, 148–160, 230 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 95 (1999), no. 3, 2267–2275. MR 1691289, DOI 10.1007/BF02172471
- A. Yu. Solynin and M. Vuorinen, Estimates for the hyperbolic metric of the punctured plane and applications, Israel J. Math. 124 (2001), 29–60. MR 1856503, DOI 10.1007/BF02772606
- Toshiyuki Sugawa and Matti Vuorinen, Some inequalities for the Poincaré metric of plane domains, Math. Z. 250 (2005), no. 4, 885–906. MR 2180380, DOI 10.1007/s00209-005-0782-0
Bibliographic Information
- David A. Herron
- Affiliation: Department of Mathematical Sciences, 839 Old Chemistry Building, P.O. Box 210025, Cincinnati, Ohio 45221-0025
- MR Author ID: 85095
- Email: David.Herron@math.UC.edu
- William Ma
- Affiliation: School of Integrated Studies, Pennsylvania College of Technology, Williamsport, Pennsylvania 17701
- Email: wma@pct.edu
- David Minda
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- Email: david.minda@math.uc.edu
- Received by editor(s): November 30, 2007
- Published electronically: June 10, 2008
- Additional Notes: The first and third authors were supported by the Charles Phelps Taft Research Center.
- © Copyright 2008 American Mathematical Society
- Journal: Conform. Geom. Dyn. 12 (2008), 67-96
- MSC (2000): Primary 30F45; Secondary 30C55, 30F30
- DOI: https://doi.org/10.1090/S1088-4173-08-00178-1
- MathSciNet review: 2410919
Dedicated: Dedicated to Roger Barnard on the occasion of his $65^{th}$ birthday.