Construction of vector fields and Riccati foliations associated to groups of projective automorphisms
HTML articles powered by AMS MathViewer
- by Fabio Santos and Bruno Scárdua
- Conform. Geom. Dyn. 14 (2010), 154-166
- DOI: https://doi.org/10.1090/S1088-4173-2010-00208-0
- Published electronically: June 2, 2010
- PDF | Request permission
Abstract:
Our main result states that given a finitely generated subgroup $G$ of $\operatorname {Aut}(\mathbb {C} P (2))$, there is an algebraic foliation $\mathcal {F}$ on a complex projective $3$-manifold $M^3$ with a bundle structure over $\mathbb {C} P(1)$ and fiber $\mathbb {C} P(2)$, such that $\mathcal {F}$ is transverse to almost every fiber of the bundle and with global holonomy conjugate to $G$.References
- César Camacho and Alcides Lins Neto, Geometric theory of foliations, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the Portuguese by Sue E. Goodman. MR 824240, DOI 10.1007/978-1-4612-5292-4
- Claude Godbillon, Feuilletages, Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991 (French). Études géométriques. [Geometric studies]; With a preface by G. Reeb. MR 1120547
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Robert C. Gunning, Introduction to holomorphic functions of several variables. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990. Function theory. MR 1052649
- Alcides Lins Neto, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geom. 26 (1987), no. 1, 1–31. MR 892029
- Ivan Pan and Marcos Sebastiani, Les équations différentielles algébriques et les singularités mobiles, Ensaios Matemáticos [Mathematical Surveys], vol. 8, Sociedade Brasileira de Matemática, Rio de Janeiro, 2004 (French, with French summary). MR 2101092
- I. Pan and M. Sebastiani, Sur les équations différentielles algébriques admettant des solutions avec une singularité essentielle, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 6, 1621–1633 (French, with English and French summaries). MR 1871283, DOI 10.5802/aif.1868
- Bruno Scárdua, On complex codimension-one foliations transverse fibrations, J. Dyn. Control Syst. 11 (2005), no. 4, 575–603. MR 2170665, DOI 10.1007/s10883-005-8819-6
- B. Azevedo Scárdua, Holomorphic foliations transverse to fibrations on hyperbolic manifolds, Complex Variables Theory Appl. 46 (2001), no. 3, 219–240. MR 1869737, DOI 10.1080/17476930108815410
Bibliographic Information
- Fabio Santos
- Affiliation: Departamento de Geometria, Instituto de Matemática, Universidade Federal Fluminense, Niteroi, Rio de Janeiro 24.020-140, Brazil
- Email: fabio@mat.uff.br
- Bruno Scárdua
- Affiliation: Instituto de Matematica, Universidade Federal do Rio de Janeiro, CP. 68530-Rio de Janeiro-RJ, 21945-970, Brazil
- Email: scardua@im.ufrj.br
- Received by editor(s): August 27, 2009
- Published electronically: June 2, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 154-166
- MSC (2010): Primary 37F75, 32S65; Secondary 32M25, 32M05
- DOI: https://doi.org/10.1090/S1088-4173-2010-00208-0
- MathSciNet review: 2652067