Skip to Main Content

Conformal Geometry and Dynamics

Published by the American Mathematical Society since 1997, the purpose of this electronic-only journal is to provide a forum for mathematical work in related fields broadly described as conformal geometry and dynamics. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4173

The 2020 MCQ for Conformal Geometry and Dynamics is 0.49.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Shapes of tetrahedra with prescribed cone angles
HTML articles powered by AMS MathViewer

by Ahtziri González and Jorge L. López-López
Conform. Geom. Dyn. 15 (2011), 50-63
Published electronically: June 7, 2011


Given real numbers $4\pi >\theta _0\geq \theta _1\geq \theta _2\geq \theta _3>0$ so that $\sum _{j=0}^3\theta _j=4\pi$, we provide a detailed description of the space of flat metrics on the 2-sphere with 4 conical points of cone angles $\theta _0,\theta _1,\theta _2,\theta _3$, endowed with a geometric structure arising from the area function.
  • A. H. Cruz-Cota, The moduli space of hex spheres,, 2010.
  • P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651, DOI 10.1007/BF02831622
  • F. Fillastre, From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston,, 2009.
  • Herman Gluck, Kenneth Krigelman, and David Singer, The converse to the Gauss-Bonnet theorem in PL, J. Differential Geometry 9 (1974), 601–616. MR 390962
  • Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
  • W. Klingenberg, Riemannian geometry, de Gruyter Stud. Math., vol. 1, de Gruyter, 1982.
  • Sadayoshi Kojima, Complex hyperbolic cone structures on the configuration spaces, Rend. Istit. Mat. Univ. Trieste 32 (2001), no. suppl. 1, 149–163 (2002). Dedicated to the memory of Marco Reni. MR 1893396
  • William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
  • William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 511–549. MR 1668340, DOI 10.2140/gtm.1998.1.511
  • Marc Troyanov, On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 507–540. MR 2349679, DOI 10.4171/029-1/13
  • William A. Veech, Flat surfaces, Amer. J. Math. 115 (1993), no. 3, 589–689. MR 1221838, DOI 10.2307/2375075
Similar Articles
  • Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 51M20, 58D17, 51M10, 51M25
  • Retrieve articles in all journals with MSC (2010): 51M20, 58D17, 51M10, 51M25
Bibliographic Information
  • Ahtziri González
  • Affiliation: CIMAT, Mineral de Valenciana, C.P. 36240, Guanajuato, Gto., Mexico
  • Email:
  • Jorge L. López-López
  • Affiliation: Facultad de Ciencias Físico-matemáticas, UMSNH, Ciudad Universitaria, C.P. 58040, Morelia, Mich., Mexico
  • Email:
  • Received by editor(s): December 7, 2010
  • Published electronically: June 7, 2011
  • Additional Notes: The study was partially supported by funding from the UMSNH (by means of a project of the CIC) and the SEP (by means of the Red Temática de Colaboración “Álgebra, topología y análisis”).
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Conform. Geom. Dyn. 15 (2011), 50-63
  • MSC (2010): Primary 51M20; Secondary 58D17, 51M10, 51M25
  • DOI:
  • MathSciNet review: 2833472