Shapes of tetrahedra with prescribed cone angles
HTML articles powered by AMS MathViewer
- by Ahtziri González and Jorge L. López-López
- Conform. Geom. Dyn. 15 (2011), 50-63
- DOI: https://doi.org/10.1090/S1088-4173-2011-00225-6
- Published electronically: June 7, 2011
- PDF | Request permission
Abstract:
Given real numbers $4\pi >\theta _0\geq \theta _1\geq \theta _2\geq \theta _3>0$ so that $\sum _{j=0}^3\theta _j=4\pi$, we provide a detailed description of the space of flat metrics on the 2-sphere with 4 conical points of cone angles $\theta _0,\theta _1,\theta _2,\theta _3$, endowed with a geometric structure arising from the area function.References
- A. H. Cruz-Cota, The moduli space of hex spheres, http://arxiv.org/abs/1010.5235, 2010.
- P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651, DOI 10.1007/BF02831622
- F. Fillastre, From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston, http://fillastre.u-cergy.fr/articles.html, 2009.
- Herman Gluck, Kenneth Krigelman, and David Singer, The converse to the Gauss-Bonnet theorem in PL, J. Differential Geometry 9 (1974), 601–616. MR 390962
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- W. Klingenberg, Riemannian geometry, de Gruyter Stud. Math., vol. 1, de Gruyter, 1982.
- Sadayoshi Kojima, Complex hyperbolic cone structures on the configuration spaces, Rend. Istit. Mat. Univ. Trieste 32 (2001), no. suppl. 1, 149–163 (2002). Dedicated to the memory of Marco Reni. MR 1893396
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 511–549. MR 1668340, DOI 10.2140/gtm.1998.1.511
- Marc Troyanov, On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 507–540. MR 2349679, DOI 10.4171/029-1/13
- William A. Veech, Flat surfaces, Amer. J. Math. 115 (1993), no. 3, 589–689. MR 1221838, DOI 10.2307/2375075
Bibliographic Information
- Ahtziri González
- Affiliation: CIMAT, Mineral de Valenciana, C.P. 36240, Guanajuato, Gto., Mexico
- Email: ahtziri@cimat.mx
- Jorge L. López-López
- Affiliation: Facultad de Ciencias Físico-matemáticas, UMSNH, Ciudad Universitaria, C.P. 58040, Morelia, Mich., Mexico
- Email: jllopez@umich.mx
- Received by editor(s): December 7, 2010
- Published electronically: June 7, 2011
- Additional Notes: The study was partially supported by funding from the UMSNH (by means of a project of the CIC) and the SEP (by means of the Red Temática de Colaboración “Álgebra, topología y análisis”).
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 50-63
- MSC (2010): Primary 51M20; Secondary 58D17, 51M10, 51M25
- DOI: https://doi.org/10.1090/S1088-4173-2011-00225-6
- MathSciNet review: 2833472