The Schwarzian derivative and polynomial iteration
HTML articles powered by AMS MathViewer
- by Hexi Ye
- Conform. Geom. Dyn. 15 (2011), 113-132
- DOI: https://doi.org/10.1090/S1088-4173-2011-00229-3
- Published electronically: August 16, 2011
- PDF | Request permission
Abstract:
We consider the Schwarzian derivative $S_f$ of a complex polynomial $f$ and its iterates. We show that the sequence $S_{f^n}/d^{2n}$ converges to $-2(\partial G_f)^2$, for $G_f$ the escape-rate function of $f$. As a quadratic differential, the Schwarzian derivative $S_{f^n}$ determines a conformal metric on the plane. We study the ultralimit of these metric spaces.References
- Lars V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1954), 1–58; correction, 207–208. MR 64875, DOI 10.1007/BF02803585
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc. 22 (1990), no. 6, 576–582. MR 1099008, DOI 10.1112/blms/22.6.576
- A. F. Beardon, Polynomials with identical Julia sets, Complex Variables Theory Appl. 17 (1992), no. 3-4, 195–200. MR 1147050, DOI 10.1080/17476939208814512
- I. N. Baker and A. Erëmenko, A problem on Julia sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 229–236. MR 951972, DOI 10.5186/aasfm.1987.1205
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- David Dumas, Complex projective structures, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 455–508. MR 2497780, DOI 10.4171/055-1/13
- Laura G. DeMarco and Curtis T. McMullen, Trees and the dynamics of polynomials, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 337–382 (English, with English and French summaries). MR 2482442, DOI 10.24033/asens.2070
- L. DeMarco and K. Pilgrim. Polynomial basins of infinity (preprint).
- José L. Fernández, A note on the Julia set of polynomials, Complex Variables Theory Appl. 12 (1989), no. 1-4, 83–85. MR 1040911, DOI 10.1080/17476938908814356
- Gaston Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) 39 (1922), 131–215 (French). MR 1509242, DOI 10.24033/asens.740
- Brad Osgood and Dennis Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, Duke Math. J. 67 (1992), no. 1, 57–99. MR 1174603, DOI 10.1215/S0012-7094-92-06704-4
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
Bibliographic Information
- Hexi Ye
- Affiliation: University of Illinois at Chicago, Department of Mathematics and Computer Science, MC 249, 851 S. Morgan Street, Chicago, Illinois 60607-7045
- Received by editor(s): June 17, 2011
- Published electronically: August 16, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 113-132
- MSC (2010): Primary 37F10; Secondary 37F40
- DOI: https://doi.org/10.1090/S1088-4173-2011-00229-3
- MathSciNet review: 2833475