Assouad dimension of self-affine carpets
Author:
John M. Mackay
Journal:
Conform. Geom. Dyn. 15 (2011), 177-187
MSC (2010):
Primary 28A78; Secondary 28A80, 37F35
DOI:
https://doi.org/10.1090/S1088-4173-2011-00232-3
Published electronically:
November 2, 2011
MathSciNet review:
2846307
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We calculate the Assouad dimension of the self-affine carpets of Bedford and McMullen, and of Lalley and Gatzouras. We also calculate the conformal Assouad dimension of those carpets that are not self-similar.
- C. Bandt and A. Käenmäki, Local structure of self-affine sets, Preprint, arXiv:1104.0088 (2011).
- Krzysztof Barański, Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math. 210 (2007), no. 1, 215–245. MR 2298824, DOI https://doi.org/10.1016/j.aim.2006.06.005
- T. Bedford, Crinkly curves, Markov partitions and dimension, Ph.D. thesis, University of Warwick, 1984.
- I. Binder and H. Hakobyan, Conformal dimension of self-affine and random Bedford-McMullen carpets, Preprint (2010).
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
- Jianyu Chen and Yakov Pesin, Dimension of non-conformal repellers: a survey, Nonlinearity 23 (2010), no. 4, R93–R114. MR 2602012, DOI https://doi.org/10.1088/0951-7715/23/4/R01
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917
- S. Keith and T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), no. 6, 1278–1321. MR 2135168, DOI https://doi.org/10.1007/s00039-004-0492-5
- Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533–568. MR 1183358, DOI https://doi.org/10.1512/iumj.1992.41.41031
- John M. Mackay and Jeremy T. Tyson, Conformal dimension, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR 2662522
- Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1–9. MR 771063, DOI https://doi.org/10.1017/S0027763000021085
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI https://doi.org/10.5186/aasfm.1989.1424
- Jeremy T. Tyson, Lowering the Assouad dimension by quasisymmetric mappings, Illinois J. Math. 45 (2001), no. 2, 641–656. MR 1878624
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 28A78, 28A80, 37F35
Retrieve articles in all journals with MSC (2010): 28A78, 28A80, 37F35
Additional Information
John M. Mackay
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Address at time of publication:
Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, United Kingdom
MR Author ID:
845756
Email:
john.mackay@maths.ox.ac.uk
Keywords:
Assouad dimension,
conformal Assouad dimension,
Bedford-McMullen carpets
Received by editor(s):
July 23, 2010
Published electronically:
November 2, 2011
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.