Hardy-Orlicz Spaces of conformal densities
HTML articles powered by AMS MathViewer
- by Sita Benedict
- Conform. Geom. Dyn. 19 (2015), 146-158
- DOI: https://doi.org/10.1090/ecgd/280
- Published electronically: May 26, 2015
- PDF | Request permission
Abstract:
We define and prove characterizations of Hardy-Orlicz spaces of conformal densities.References
- Kari Astala and Pekka Koskela, $H^p$-theory for quasiconformal mappings, Pure Appl. Math. Q. 7 (2011), no. 1, 19–50. MR 2900163, DOI 10.4310/PAMQ.2011.v7.n1.a3
- Albert Baernstein II, Daniel Girela, and José Ángel Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois J. Math. 48 (2004), no. 3, 837–859. MR 2114254
- Mario Bonk, Pekka Koskela, and Steffen Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. (3) 77 (1998), no. 3, 635–664. MR 1643421, DOI 10.1112/S0024611598000586
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353–361. MR 148884
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586
- Pekka Koskela and Sita Benedict, Intrinsic Hardy-Orlicz spaces of conformal mappings, Bull. Lond. Math. Soc. 47 (2015), no. 1, 75–84. MR 3312966, DOI 10.1112/blms/bdu097
- F. Nevanlinna and R. Nevanlinna, Über die eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie, Acta Soc. Sci. Fenn. 50 (1922), no. 5.
- Ch. Pommerenke, Über die Mittelwerte und Koeffizienten multivalenter Funktionen, Math. Annalen 145 (1962), 185–296.
- H. Prawitz, Über Mittelwerte analytischer Funktionen, Ark. Mat. Astr. Fys. 20A (1927), 1–12.
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Bibliographic Information
- Sita Benedict
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014, Finland
- MR Author ID: 1096432
- Email: sita.c.benedict@jyu.fi
- Received by editor(s): September 23, 2014
- Received by editor(s) in revised form: March 19, 2015
- Published electronically: May 26, 2015
- Additional Notes: The author was partially supported by the Academy of Finland grants 131477 and 263850.
- © Copyright 2015 American Mathematical Society
- Journal: Conform. Geom. Dyn. 19 (2015), 146-158
- MSC (2010): Primary 30C35, 30H10
- DOI: https://doi.org/10.1090/ecgd/280
- MathSciNet review: 3350023