Metrics with four conic singularities and spherical quadrilaterals
HTML articles powered by AMS MathViewer
- by Alexandre Eremenko, Andrei Gabrielov and Vitaly Tarasov
- Conform. Geom. Dyn. 20 (2016), 128-175
- DOI: https://doi.org/10.1090/ecgd/295
- Published electronically: May 16, 2016
- PDF | Request permission
Abstract:
A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature $1$, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these quadrilaterals and perform the classification up to isometry in the case that two angles at the corners are multiples of $\pi$. The problem is equivalent to classification of Heun’s equations with real parameters and unitary monodromy.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Lars V. Ahlfors, Conformal invariants, AMS Chelsea Publishing, Providence, RI, 2010. Topics in geometric function theory; Reprint of the 1973 original; With a foreword by Peter Duren, F. W. Gehring and Brad Osgood. MR 2730573, DOI 10.1090/chel/371
- Indranil Biswas, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math. 9 (1998), no. 5, 523–533. MR 1644048, DOI 10.1142/S0129167X98000233
- Mario Bonk and Alexandre Eremenko, Uniformly hyperbolic surfaces, Indiana Univ. Math. J. 49 (2000), no. 1, 61–80. MR 1777037, DOI 10.1512/iumj.2000.49.1886
- R. Buckman and N. Schmitt, Spherical polygons and unitarization, www.gang.umass.edu/reu/2002/gon.pdf.
- Ching-Li Chai, Chang-Shou Lin, and Chin-Lung Wang, Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math. 3 (2015), no. 1-2, 127–274. MR 3356357, DOI 10.4310/CJM.2015.v3.n1.a3
- Chiun-Chuan Chen and Chang-Shou Lin, Mean field equation of Liouville type with singular data: topological degree, Comm. Pure Appl. Math. 68 (2015), no. 6, 887–947. MR 3340376, DOI 10.1002/cpa.21532
- Qing Chen, Wei Wang, Yingyi Wu, and Bin Xu, Conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces, Pacific J. Math. 273 (2015), no. 1, 75–100. MR 3290445, DOI 10.2140/pjm.2015.273.75
- J. Dorfmeister and M. Schuster, Construction of planar CMC 4-noids of genus $g=0$, JP J. Geom. Topol. 6 (2006), no. 3, 319–381. MR 2284531
- J. Dorfmeister and J.-H. Eschenburg, Real Fuchsian equations and constant mean curvature surfaces, Mat. Contemp. 35 (2008), 1–25. MR 2584173
- A. Eremenko, Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3349–3355. MR 2073312, DOI 10.1090/S0002-9939-04-07439-8
- A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. (2) 155 (2002), no. 1, 105–129. MR 1888795, DOI 10.2307/3062151
- Alexandre Eremenko and Andrei Gabrielov, The Wronski map and Grassmannians of real codimension 2 subspaces, Comput. Methods Funct. Theory 1 (2001), no. 1, [On table of contents: 2002], 1–25. MR 1931599, DOI 10.1007/BF03320973
- Alexandre Eremenko and Andrei Gabrielov, An elementary proof of the B. and M. Shapiro conjecture for rational functions, Notions of positivity and the geometry of polynomials, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2011, pp. 167–178. MR 3051166, DOI 10.1007/978-3-0348-0142-3_{1}0
- A. Eremenko and A. Gabrielov, Counterexamples to pole placement by static output feedback, Linear Algebra Appl. 351/352 (2002), 211–218. Fourth special issue on linear systems and control. MR 1917479, DOI 10.1016/S0024-3795(01)00443-8
- Alexandre Eremenko, Andrei Gabrielov, and Vitaly Tarasov, Metrics with conic singularities and spherical polygons, Illinois J. Math. 58 (2014), no. 3, 739–755. MR 3395961
- A. Eremenko, A. Gabrielov, and V. Tarasov, Spherical quadrilaterals with three non-integer angles, arXiv:1504.02928. To appear in Journal of Mathematical Physics, Analysis and Geometry.
- A. Eremenko, A. Gabrielov, M. Shapiro, and A. Vainshtein, Rational functions and real Schubert calculus, Proc. Amer. Math. Soc. 134 (2006), no. 4, 949–957. MR 2196025, DOI 10.1090/S0002-9939-05-08048-2
- Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada, CMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 8, 144–149. MR 2843096
- F. P. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, Revised edition, AMS Chelsea Publishing, Providence, RI, 2002. Translation based on the 1941 Russian original; Edited and with a preface by Alex Eremenko. MR 1908601, DOI 10.1090/chel/345
- Lisa R. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), no. 2, 129–144. MR 1093002, DOI 10.1016/0001-8708(91)90052-9
- Maurice Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60. MR 143901, DOI 10.1017/S002776300002376X
- E. Hilb, Über Kleinsche Theoreme in der Theorie der linearen Differentialgleichingen, Ann. Math., 66 (1909) 215–257.
- E. Hilb, Über Kleinsche Theoreme in der Theorie der linearen Differentialgleichungen (2 Mitteilung), Ann. Math., 68 (1910) 24–71.
- A. Hurwitz, Über die Nullstellen der hypergeometrischen Funktion, Math. Ann. 64 (1907), no. 4, 517–560 (German). MR 1511455, DOI 10.1007/BF01450062
- W. Ihlenburg, Über die geometrischen Eigenschaften der Kreisbogenvierecke, Nova Acta Leopoldina, 91 (1909) 1-79 and 5 pages of tables.
- W. Ihlenburg, Ueber die gestaltlichen Vergältnisse der Kreisbogenvierecke, Göttingen Nachrichten, (1908) 225-230.
- Felix Klein, Ueber die Nullstellen der hypergeometrischen Reihe, Math. Ann. 37 (1890), no. 4, 573–590 (German). MR 1510659, DOI 10.1007/BF01724773
- F. Klein, Bemerkungen zur Theorie der linearen Differentialgleichungen zweiter Ordnung, Math. Ann. 64 (1907), no. 2, 175–196 (German). MR 1511433, DOI 10.1007/BF01449891
- Feng Luo and Gang Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1119–1129. MR 1137227, DOI 10.1090/S0002-9939-1992-1137227-5
- G. Mondello and D. Panov, Spherical metrics with conical singularities on a $2$-sphere: angle constraints, arXiv:1505.01994.
- Evgeny Mukhin, Vitaly Tarasov, and Alexander Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, Ann. of Math. (2) 170 (2009), no. 2, 863–881. MR 2552110, DOI 10.4007/annals.2009.170.863
- E. Mukhin, V. Tarasov, and A. Varchenko, On reality property of Wronski maps, Confluentes Math. 1 (2009), no. 2, 225–247. MR 2561998, DOI 10.1142/S1793744209000092
- E. Picard, De l’equation $\Delta u=ke^u$ sur une surface de Riemann fermée, J. Math. Pures Appl 9 (1893) 273–292.
- E. Picard, De l’equation $\Delta u=e^u$, J. Math Pures Appl., 4 (1898) 313–316.
- E. Picard, De l’intégration de l’équation $\Delta u=e^u$ sur une surface de Riemann fermée, J. Reine Angew. Math. 130 (1905), 243–258 (French). MR 1580684, DOI 10.1515/crll.1905.130.243
- E. Picard, Quelques applications analytiques de la théorie des courbes et des surfaces algébriques, Gauthier-Villars, Paris, 1931.
- L. Pontrjagin, Hermitian operators in spaces with indefinite metric, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 8 (1944), 243–280 (Russian, with English summary). MR 0012200
- Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599, DOI 10.1007/BF01231281
- A. Ronveaux (ed.), Heun’s differential equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval. MR 1392976
- Henri Paul de Saint-Gervais, Uniformisation des surfaces de Riemann, ENS Éditions, Lyon, 2010 (French). Retour sur un théorème centenaire. [A look back at a 100-year-old theorem]; The name of Henri Paul de Saint-Gervais covers a group composed of fifteen mathematicians : Aurélien Alvarez, Christophe Bavard, François Béguin, Nicolas Bergeron, Maxime Bourrigan, Bertrand Deroin, Sorin Dumitrescu, Charles Frances, Étienne Ghys, Antonin Guilloux, Frank Loray, Patrick Popescu-Pampu, Pierre Py, Bruno Sévennec, and Jean-Claude Sikorav. MR 2768303
- I. Scherbak, Rational functions with prescribed critical points, Geom. Funct. Anal. 12 (2002), no. 6, 1365–1380. MR 1952932, DOI 10.1007/s00039-002-1365-4
- A. Schönflies, Ueber Kreisbogendreiecke und Kreisbogenvierecke, Math. Ann. 44 (1894), no. 1, 105–124 (German). MR 1510837, DOI 10.1007/BF01446976
- A. Schönflies, Ueber Kreisbogenpolygone, Math. Ann. 42 (1893), no. 3, 377–408 (German). MR 1510783, DOI 10.1007/BF01444164
- V. I. Smirnov, The problem of inversion of a linear differential equation of second order with four singularities, Petrograd, 1918 (Russian). Reproduced in V. I Smirnov, Selected works, vol. 2, Analytic theory of ordinary differential equations, St. Peterburg University, St. Peterburg, 1996.
- V. Smirnoff, Sur les équations différentialles linéaires du second ordre et la théorie des fonctions automorphes, Bull. Sci. Math., 45 (1921) 93–120, 126-135.
- Gabriella Tarantello, Analytical, geometrical and topological aspects of a class of mean field equations on surfaces, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 931–973. MR 2644774, DOI 10.3934/dcds.2010.28.931
- Marc Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793–821. MR 1005085, DOI 10.1090/S0002-9947-1991-1005085-9
- Marc Troyanov, Metrics of constant curvature on a sphere with two conical singularities, Differential geometry (Peñíscola, 1988) Lecture Notes in Math., vol. 1410, Springer, Berlin, 1989, pp. 296–306. MR 1034288, DOI 10.1007/BFb0086431
- Masaaki Umehara and Kotaro Yamada, Metrics of constant curvature $1$ with three conical singularities on the $2$-sphere, Illinois J. Math. 44 (2000), no. 1, 72–94. MR 1731382
- Edward B. Van Vleck, A determination of the number of real and imaginary roots of the hypergeometric series, Trans. Amer. Math. Soc. 3 (1902), no. 1, 110–131. MR 1500590, DOI 10.1090/S0002-9947-1902-1500590-4
- Masaaki Yoshida, A naive-topological study of the contiguity relations for hypergeometric functions, PDEs, submanifolds and affine differential geometry, Banach Center Publ., vol. 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005, pp. 257–268. MR 2189572, DOI 10.4064/bc69-0-20
Bibliographic Information
- Alexandre Eremenko
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- MR Author ID: 63860
- Andrei Gabrielov
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- MR Author ID: 335711
- Vitaly Tarasov
- Affiliation: Department of Mathematics, IUPUI, Indianapolis, Indiana 46202-3216 — and — St. Petersburg branch of Steklov Mathematical Institute, 27, Fontanka, 191023 St. Petersburg, Russia
- MR Author ID: 191119
- Received by editor(s): July 7, 2015
- Received by editor(s) in revised form: March 11, 2016, and March 12, 2016
- Published electronically: May 16, 2016
- Additional Notes: The first author was supported by NSF grant DMS-1361836.
The second author was supported by NSF grant DMS-1161629. - © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 128-175
- MSC (2010): Primary 30C20, 34M03
- DOI: https://doi.org/10.1090/ecgd/295
- MathSciNet review: 3500744