Dynamics in the Eremenko-Lyubich class
HTML articles powered by AMS MathViewer
- by David J. Sixsmith
- Conform. Geom. Dyn. 22 (2018), 185-224
- DOI: https://doi.org/10.1090/ecgd/324
- Published electronically: September 11, 2018
- PDF | Request permission
Abstract:
The study of the dynamics of polynomials is now a major field of research, with many important and elegant results. The study of entire functions that are not polynomials – in other words transcendental entire functions – is somewhat less advanced, in part due to certain technical differences compared to polynomial or rational dynamics.
In this paper we survey the dynamics of functions in the Eremenko-Lyubich class, $\mathcal {B}$. Among transcendental entire functions, those in this class have properties that make their dynamics most “similar” to the dynamics of a polynomial, and so particularly accessible to detailed study. Many authors have worked in this field, and the dynamics of class $\mathcal {B}$ functions is now particularly well-understood and well-developed. There are many striking and unexpected results. Several powerful tools and techniques have been developed to help progress this work. There is also an increasing expectation that learning new results in transcendental dynamics will lead to a better understanding of the polynomial and rational cases.
We consider the fundamentals of this field, review some of the most important results, techniques and ideas, and give stepping-stones to deeper inquiry.
References
- Magnus Aspenberg and Walter Bergweiler, Entire functions with Julia sets of positive measure, Math. Ann. 352 (2012), no. 1, 27–54. MR 2885574, DOI 10.1007/s00208-010-0625-0
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980, DOI 10.1090/S0002-9947-1993-1182980-3
- Nada Alhabib and Lasse Rempe-Gillen, Escaping endpoints explode, Comput. Methods Funct. Theory 17 (2017), no. 1, 65–100. MR 3620879, DOI 10.1007/s40315-016-0169-8
- Irvine Noel Baker, Multiply connected domains of normality in iteration theory, Math. Z. 81 (1963), 206–214. MR 153842, DOI 10.1007/BF01111543
- I. N. Baker, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I 467 (1970), 11. MR 0264071
- I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277–283. MR 0402044, DOI 10.5186/aasfm.1975.0101
- Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33–59. MR 2318569, DOI 10.1007/s00209-007-0114-7
- Krzysztof Barański, Hausdorff dimension of hairs and ends for entire maps of finite order, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 719–737. MR 2464786, DOI 10.1017/S0305004108001515
- Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI 10.4171/RMI/176
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014. With contributions by Xavier Buff, Shaun Bullett, Adam L. Epstein, Peter Haïssinsky, Christian Henriksen, Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei and Michael Yampolsky. MR 3445628
- Walter Bergweiler, Núria Fagella, and Lasse Rempe-Gillen, Hyperbolic entire functions with bounded Fatou components, Comment. Math. Helv. 90 (2015), no. 4, 799–829. MR 3433280, DOI 10.4171/CMH/371
- Walter Bergweiler and A. Hinkkanen, On semiconjugation of entire functions, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 3, 565–574. MR 1684251, DOI 10.1017/S0305004198003387
- Christopher J. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1–60. MR 3316755, DOI 10.1007/s11511-015-0122-0
- Christopher J. Bishop, Models for the Eremenko-Lyubich class, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 202–221. MR 3384512, DOI 10.1112/jlms/jdv021
- Christopher J. Bishop, Models for the Speiser class, Proc. Lond. Math. Soc. (3) 114 (2017), no. 5, 765–797. MR 3653246, DOI 10.1112/plms.12025
- Krzysztof Barański, Xavier Jarque, and Lasse Rempe, Brushing the hairs of transcendental entire functions, Topology Appl. 159 (2012), no. 8, 2102–2114. MR 2902745, DOI 10.1016/j.topol.2012.02.004
- Krzysztof Barański and Bogusława Karpińska, Coding trees and boundaries of attracting basins for some entire maps, Nonlinearity 20 (2007), no. 2, 391–415. MR 2290468, DOI 10.1088/0951-7715/20/2/008
- Walter Bergweiler, Bogusława Karpińska, and Gwyneth M. Stallard, The growth rate of an entire function and the Hausdorff dimension of its Julia set, J. Lond. Math. Soc. (2) 80 (2009), no. 3, 680–698. MR 2559123, DOI 10.1112/jlms/jdp042
- Krzysztof Barański, Bogusława Karpińska, and Anna Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN 4 (2009), 615–624. MR 2480096, DOI 10.1093/imrn/rnn141
- A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 9–56. MR 2492498
- Walter Bergweiler and Steffen Rohde, Omitted values in domains of normality, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1857–1858. MR 1249869, DOI 10.1090/S0002-9939-1995-1249869-X
- Anna Benini and Lasse Rempe-Gillen, A landing theorem for entire functions with bounded post-singular sets, Preprint, arXiv:1711.10780v2, 2017.
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Włodzimierz J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), no. 1, 27–34. MR 1002079
- Weiwei Cui, Lebesgue measure of escaping sets of entire functions, Ergodic Theory Dynam. Systems, https://doi.org/10.1017/etds.2018.31, 2018.
- Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167–171. MR 741732, DOI 10.1090/S0273-0979-1984-15253-4
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X
- Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503. MR 873428, DOI 10.1017/S0143385700003655
- A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25–27 (Russian). MR 769199
- A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, DOI 10.1112/jlms/s2-36.3.458
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- V. Evdoridou and D. Sixsmith, The topology of the set of non-escaping endpoints, Preprint, arXiv:1802.02738v1, 2018.
- Leonhard Euler. De formulis exponentialibus replicatis. Acta Academiae Scientiarum Petropolitanae, 1:38–60, 1778. Also in Opera Omnia, Series Prima, vol. 15. pp. 268-297.
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787, DOI 10.24033/bsmf.998
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94 (French). MR 1504792, DOI 10.24033/bsmf.1003
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 208–314 (French). MR 1504797, DOI 10.24033/bsmf.1008
- P. Fatou, Sur l’itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337–370 (French). MR 1555220, DOI 10.1007/BF02559517
- N. Fagella, X. Jarque, and K. Lazebnik, Univalent wandering domains in the Ëremenko-Lyubich class, Preprint, arXiv:1711.10629v1, 2017.
- Otto Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York, 1991. Translated from the 1977 German original by Bruce Gilligan; Reprint of the 1981 English translation. MR 1185074
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394
- Wilhelm Gross, Eine ganze Funktion, für die jede komplexe Zahl Konvergenzwert ist, Math. Ann. 79 (1918), no. 1-2, 201–208 (German). MR 1511920, DOI 10.1007/BF01457182
- M. E. Herring, Mapping properties of Fatou components, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 263–274. MR 1642181
- F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Ph.D. thesis, Helsingfors, 1914.
- G. Julia, Mémoire sur l’iteration des fonctions rationnelles, J. Math. Pures Appl, 8(1):47–245, 1918.
- Boguslawa Karpińska, Hausdorff dimension of the hairs without endpoints for $\lambda \exp z$, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 11, 1039–1044 (English, with English and French summaries). MR 1696203, DOI 10.1016/S0764-4442(99)80321-8
- A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1960/61), 301–319. MR 133806, DOI 10.4064/fm-49-3-301-319
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- John C. Mayer, An explosion point for the set of endpoints of the Julia set of $\lambda \exp (z)$, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 177–183. MR 1053806, DOI 10.1017/S0143385700005460
- Helena Mihaljević-Brandt, Topological dynamics of transcendental entire functions, Ph.D. thesis, University of Liverpool, 2009.
- Helena Mihaljević-Brandt, A landing theorem for dynamic rays of geometrically finite entire functions, J. Lond. Math. Soc. (2) 81 (2010), no. 3, 696–714. MR 2650792, DOI 10.1112/jlms/jdq014
- Helena Mihaljević-Brandt, Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds, Trans. Amer. Math. Soc. 364 (2012), no. 8, 4053–4083. MR 2912445, DOI 10.1090/S0002-9947-2012-05541-3
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- MichałMisiurewicz, On iterates of $e^{z}$, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 103–106. MR 627790, DOI 10.1017/s014338570000119x
- Shunsuke Morosawa, Local connectedness of Julia sets for transcendental entire functions, Nonlinear analysis and convex analysis (Niigata, 1998) World Sci. Publ., River Edge, NJ, 1999, pp. 266–273. MR 1742079
- D. Martí-Pete and M. Shishikura, Wandering domains for entire functions of finite order in the Eremenko-Lyubich class (2018), arXiv:1807.11820v1.
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions, Die Grundlehren der mathematischen Wissenschaften, Band 193, Springer-Verlag, New York-Berlin, 1972. Translated from the German by D. Aeppli. MR 0344042
- Lasse Rempe, Dynamics of Exponential Maps, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, 2003.
- Lasse Rempe, On a question of Eremenko concerning escaping components of entire functions, Bull. Lond. Math. Soc. 39 (2007), no. 4, 661–666. MR 2346947, DOI 10.1112/blms/bdm053
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- Lasse Rempe-Gillen, Arc-like continua, Julia sets of entire functions, and Ëremenko’s conjecture, Preprint, arXiv:1610.06278v2, 2016.
- Lasse Rempe-Gillen, Hyperbolic entire functions with full hyperbolic dimension and approximation by Eremenko-Lyubich functions, Proc. Lond. Math. Soc. (3) 108 (2014), no. 5, 1193–1225. MR 3214678, DOI 10.1112/plms/pdt048
- Lasse Rempe-Gillen and Dave Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich class: class $\mathcal {B}$ or not class $\mathcal {B}$?, Math. Z. 286 (2017), no. 3-4, 783–800. MR 3671560, DOI 10.1007/s00209-016-1784-9
- Günter Rottenfusser, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125. MR 2753600, DOI 10.4007/annals.2011.173.1.3
- Lasse Rempe, Philip J. Rippon, and Gwyneth M. Stallard, Are Devaney hairs fast escaping?, J. Difference Equ. Appl. 16 (2010), no. 5-6, 739–762. MR 2675603, DOI 10.1080/10236190903282824
- P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3251–3258. MR 1610785, DOI 10.1090/S0002-9939-99-04942-4
- Günter Rottenfusser and Dierk Schleicher, Escaping points of the cosine family, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 396–424. MR 2458810, DOI 10.1017/CBO9780511735233.016
- P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, Proc. Lond. Math. Soc. (3) 105 (2012), no. 4, 787–820. MR 2989804, DOI 10.1112/plms/pds001
- Dierk Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J. 136 (2007), no. 2, 343–356. MR 2286634, DOI 10.1215/S0012-7094-07-13625-1
- Hendrik Schubert, Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, 2007.
- Dierk Schleicher, Dynamics of entire functions, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 295–339. MR 2648691, DOI 10.1007/978-3-642-13171-4_{5}
- D. J. Sixsmith, A new characterisation of the Eremenko-Lyubich class, J. Anal. Math. 123 (2014), 95–105. MR 3233575, DOI 10.1007/s11854-014-0014-9
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Andreas Speiser, Probleme aus dem Gebiet der ganzen transzendenten Funktionen, Comment. Math. Helv. 1 (1929), no. 1, 289–312 (German). MR 1509398, DOI 10.1007/BF01208368
- Zhaiming Shen and Lasse Rempe-Gillen, The exponential map is chaotic: an invitation to transcendental dynamics, Amer. Math. Monthly 122 (2015), no. 10, 919–940. MR 3447747, DOI 10.4169/amer.math.monthly.122.10.919
- Gwyneth M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 551–557. MR 1068456, DOI 10.1017/S0305004100069437
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 769–777. MR 1145621, DOI 10.1017/S0143385700006477
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 513–536. MR 1357062, DOI 10.1017/S0305004100074387
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions. III, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 2, 223–244. MR 1458228, DOI 10.1017/S0305004197001722
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions. IV, J. London Math. Soc. (2) 61 (2000), no. 2, 471–488. MR 1760674, DOI 10.1112/S0024610799008601
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
Bibliographic Information
- David J. Sixsmith
- Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom. ORCiD: 0000-0002-3543-6969
- MR Author ID: 952973
- Email: david.sixsmith@open.ac.uk
- Received by editor(s): June 11, 2018
- Received by editor(s) in revised form: July 26, 2018
- Published electronically: September 11, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Conform. Geom. Dyn. 22 (2018), 185-224
- MSC (2010): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/ecgd/324
- MathSciNet review: 3852466