## The realization problem for Jørgensen numbers

HTML articles powered by AMS MathViewer

- by Yasushi Yamashita and Ryosuke Yamazaki PDF
- Conform. Geom. Dyn.
**23**(2019), 17-31 Request permission

## Abstract:

Let $G$ be a two-generator subgroup of $\mathrm {PSL}(2, \mathbb {C})$. The Jørgensen number $J(G)$ of $G$ is defined by \[ J(G) = \inf \{ |\mathrm {tr}^2 A-4| + |\mathrm {tr} [A,B]-2| \: ; \: G=\langle A, B\rangle \}. \] If $G$ is a non-elementary Kleinian group, then $J(G)\geq 1$. This inequality is called Jørgensen’s inequality. In this paper, we show that, for any $r\geq 1$, there exists a non-elementary Kleinian group whose Jørgensen number is equal to $r$. This answers a question posed by Oichi and Sato. We also present our computer generated picture which estimates Jørgensen numbers from above in the diagonal slice of Schottky space.## References

- Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 - B. H. Bowditch,
*Markoff triples and quasi-Fuchsian groups*, Proc. London Math. Soc. (3)**77**(1998), no. 3, 697–736. MR**1643429**, DOI 10.1112/S0024611598000604 - Jason Callahan,
*Jørgensen number and arithmeticity*, Conform. Geom. Dyn.**13**(2009), 160–186. MR**2525101**, DOI 10.1090/S1088-4173-09-00196-9 - Werner Fenchel,
*Elementary geometry in hyperbolic space*, De Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin, 1989. With an editorial by Heinz Bauer. MR**1004006**, DOI 10.1515/9783110849455 - F. W. Gehring and G. J. Martin,
*Stability and extremality in Jørgensen’s inequality*, Complex Variables Theory Appl.**12**(1989), no. 1-4, 277–282. MR**1040927**, DOI 10.1080/17476938908814372 - Francisco González-Acuña and Arturo Ramírez,
*Jørgensen subgroups of the Picard group*, Osaka J. Math.**44**(2007), no. 2, 471–482. MR**2351012** - Troels Jørgensen,
*On discrete groups of Möbius transformations*, Amer. J. Math.**98**(1976), no. 3, 739–749. MR**427627**, DOI 10.2307/2373814 - Troels Jørgensen and Maire Kiikka,
*Some extreme discrete groups*, Ann. Acad. Sci. Fenn. Ser. A I Math.**1**(1975), no. 2, 245–248. MR**0399452**, DOI 10.5186/aasfm.1975.0104 - Linda Keen and Caroline Series,
*Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori*, Topology**32**(1993), no. 4, 719–749. MR**1241870**, DOI 10.1016/0040-9383(93)90048-Z - Linda Keen and Caroline Series,
*The Riley slice of Schottky space*, Proc. London Math. Soc. (3)**69**(1994), no. 1, 72–90. MR**1272421**, DOI 10.1112/plms/s3-69.1.72 - Yohei Komori and Caroline Series,
*The Riley slice revisited*, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 303–316. MR**1668296**, DOI 10.2140/gtm.1998.1.303 - Changjun Li, Makito Oichi, and Hiroki Sato,
*Jørgensen groups of parabolic type II (countably infinite case)*, Osaka J. Math.**41**(2004), no. 3, 491–506. MR**2107659** - Changjun Li, Makito Oichi, and Hiroki Sato,
*Jørgensen groups of parabolic type I (finite case)*, Comput. Methods Funct. Theory**5**(2005), no. 2, 409–430. MR**2205423**, DOI 10.1007/BF03321107 - Changjun Li, Makito Oichi, and Hiroki Sato,
*Jørgensen groups of parabolic type III (uncountably infinite case)*, Kodai Math. J.**28**(2005), no. 2, 248–264. MR**2153913**, DOI 10.2996/kmj/1123767006 - Wilhelm Magnus, Abraham Karrass, and Donald Solitar,
*Combinatorial group theory*, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR**0422434** - David Mumford, Caroline Series, and David Wright,
*Indra’s pearls*, Cambridge University Press, New York, 2002. The vision of Felix Klein. MR**1913879**, DOI 10.1017/CBO9781107050051.024 - Makito Oichi,
*A fundamental polyhedron for the figure-eight knot group*, Topology Appl.**146/147**(2005), 15–19. MR**2107132**, DOI 10.1016/j.topol.2002.10.001 - Makito Oichi and Hiroki Sato,
*Jørgensen numbers of discrete groups*, Sūrikaisekikenkyūsho Kōkyūroku**1519**(2006), 105–118. - R. P. Osborne and H. Zieschang,
*Primitives in the free group on two generators*, Invent. Math.**63**(1981), no. 1, 17–24. MR**608526**, DOI 10.1007/BF01389191 - Hiroki Sato,
*One-parameter families of extreme discrete groups for Jørgensen’s inequality*, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 271–287. MR**1759686**, DOI 10.1090/conm/256/04013 - Hiroki Sato,
*The Picard group, the Whitehead link and Jørgensen groups*, Progress in analysis, Vol. I, II (Berlin, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 149–158. MR**2032679** - Hiroki Sato,
*The Jørgensen number of the Whitehead link group*, Bol. Soc. Mat. Mexicana (3)**10**(2004), no. Special Issue, 495–502. MR**2199365** - Caroline Series, Ser Peow Tan, and Yasushi Yamashita,
*The diagonal slice of Schottky space*, Algebr. Geom. Topol.**17**(2017), no. 4, 2239–2282. MR**3685607**, DOI 10.2140/agt.2017.17.2239 - Ser Peow Tan, Yan Loi Wong, and Ying Zhang,
*Generalized Markoff maps and McShane’s identity*, Adv. Math.**217**(2008), no. 2, 761–813. MR**2370281**, DOI 10.1016/j.aim.2007.09.004 - A. Yu. Vesnin and A. V. Masleĭ,
*On Jørgensen numbers and their analogs for groups of figure-eight orbifolds*, Sibirsk. Mat. Zh.**55**(2014), no. 5, 989–1000 (Russian, with Russian summary); English transl., Sib. Math. J.**55**(2014), no. 5, 807–816. MR**3289108**, DOI 10.1134/s0037446614050036 - Ryosuke Yamazaki,
*Some extensions of Oichi-Sato’s theorem for the Jørgensen numbers of the Kleinian groups*, 2016, Master thesis, University of Tokyo.

## Additional Information

**Yasushi Yamashita**- Affiliation: Nara Women’s University, Kitauoyanishi-machi, Nara-shi, Nara 630-8506, Japan
- MR Author ID: 310816
- Email: yamasita@ics.nara-wu.ac.jp
**Ryosuke Yamazaki**- Affiliation: Gakushuin Boys’ Senior High School, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-0031, Japan
- Email: rsk.yamazaki.ms@gmail.com
- Received by editor(s): August 21, 2017
- Received by editor(s) in revised form: April 15, 2018, and September 26, 2018
- Published electronically: February 25, 2019
- Additional Notes: This work was supported by JSPS KAKENHI Grant Number 26400088.
- © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**23**(2019), 17-31 - MSC (2010): Primary 30F40, 57M50
- DOI: https://doi.org/10.1090/ecgd/331
- MathSciNet review: 3916474