Analytic capacity and holomorphic motions
HTML articles powered by AMS MathViewer
- by Stamatis Pouliasis, Thomas Ransford and Malik Younsi PDF
- Conform. Geom. Dyn. 23 (2019), 130-134 Request permission
Abstract:
We study the behavior of the analytic capacity of a compact set under deformations obtained by families of conformal maps depending holomorphically on the complex parameter. We show that, under those deformations, the logarithm of the analytic capacity varies harmonically. We also show that the hypotheses in this result cannot be substantially weakened.References
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108
- Kari Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37–60. MR 1294669, DOI 10.1007/BF02392568
- K. Astala and G. J. Martin, Holomorphic motions, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 27–40. MR 1886611
- Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349, DOI 10.1007/978-1-4612-3048-9
- John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006, DOI 10.1007/BFb0060912
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Tibor Radó, On the problem of Plateau. Subharmonic functions, Springer-Verlag, New York-Heidelberg, 1971. Reprint. MR 0344979, DOI 10.1007/978-3-642-65236-3
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347–355. MR 1037218, DOI 10.1090/S0002-9939-1991-1037218-8
- Xavier Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory, Progress in Mathematics, vol. 307, Birkhäuser/Springer, Cham, 2014. MR 3154530, DOI 10.1007/978-3-319-00596-6
- Hiroshi Yamaguchi, Sur une uniformité des surfaces constantes d’une fonction entière de deux variables complexes, J. Math. Kyoto Univ. 13 (1973), 417–433 (French). MR 338424, DOI 10.1215/kjm/1250523318
- Malik Younsi and Thomas Ransford, Computation of analytic capacity and applications to the subadditivity problem, Comput. Methods Funct. Theory 13 (2013), no. 3, 337–382. MR 3102642, DOI 10.1007/s40315-013-0026-y
Additional Information
- Stamatis Pouliasis
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409
- MR Author ID: 951898
- Email: stamatis.pouliasis@ttu.edu
- Thomas Ransford
- Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (Québec), G1V 0A6, Canada
- MR Author ID: 204108
- Email: thomas.ransford@mat.ulaval.ca
- Malik Younsi
- Affiliation: Department of Mathematics, University of Hawaii Manoa, Honolulu, Hawaii 96822
- MR Author ID: 1036614
- Email: malik.younsi@gmail.com
- Received by editor(s): September 10, 2018
- Published electronically: July 2, 2019
- Additional Notes: The second author was supported by grants from NSERC and the Canada Research Chairs program.
The third author was supported by NSF Grant DMS-1758295 - © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn. 23 (2019), 130-134
- MSC (2010): Primary 30C85; Secondary 31A15, 37F99
- DOI: https://doi.org/10.1090/ecgd/336
- MathSciNet review: 3976592