## Finiteness theorems for commuting and semiconjugate rational functions

HTML articles powered by AMS MathViewer

- by Fedor Pakovich PDF
- Conform. Geom. Dyn.
**24**(2020), 202-229

## Abstract:

Let $B$ be a fixed rational function of one complex variable of degree at least two. In this paper, we study solutions of the functional equation $A\circ X=X\circ B$ in rational functions $A$ and $X$. Our main result states that, unless $B$ is a Lattès map or is conjugate to $z^{\pm d}$ or $\pm T_d$, the set of solutions is finite, up to some natural transformations. In more detail, we show that there exist finitely many rational functions $A_1, A_2,\dots , A_r$ and $X_1, X_2,\dots , X_r$ such that the equality $A\circ X=X\circ B$ holds if and only if there exists a Möbius transformation $\mu$ such that $A=\mu \circ A_j\circ \mu ^{-1}$ and $X=\mu \circ X_j\circ B^{\circ k}$ for some $j,$ $1\leq j \leq r,$ and $k\geq 1$. We also show that the number $r$ and the degrees $\deg X_j,$ $1\leq j \leq r,$ can be bounded from above in terms of the degree of $B$ only. As an application, we prove an effective version of the classical theorem of Ritt about commuting rational functions.## References

- Xavier Buff and Adam L. Epstein,
*From local to global analytic conjugacies*, Ergodic Theory Dynam. Systems**27**(2007), no. 4, 1073–1094. MR**2342966**, DOI 10.1017/S0143385707000041 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - A. È. Erëmenko,
*Some functional equations connected with the iteration of rational functions*, Algebra i Analiz**1**(1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 4, 905–919. MR**1027462** - Alexandre Eremenko,
*Invariant curves and semiconjugacies of rational functions*, Fund. Math.**219**(2012), no. 3, 263–270. MR**3001243**, DOI 10.4064/fm219-3-5 - H. M. Farkas and I. Kra,
*Riemann surfaces*, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR**1139765**, DOI 10.1007/978-1-4612-2034-3 - P. Fatou,
*Sur l’iteration analytique et les substitutions permutables,*J. Math. Pures Appl.**2**(1923), no. 9, 343–384. - Hiroyuki Inou,
*Extending local analytic conjugacies*, Trans. Amer. Math. Soc.**363**(2011), no. 1, 331–343. MR**2719684**, DOI 10.1090/S0002-9947-2010-05049-4 - Gaston Julia,
*Mémoire sur la permutabilité des fractions rationnelles*, Ann. Sci. École Norm. Sup. (3)**39**(1922), 131–215 (French). MR**1509242**, DOI 10.24033/asens.740 - Felix Klein,
*Lectures on the icosahedron and the solution of equations of the fifth degree*, Second and revised edition, Dover Publications, Inc., New York, N.Y., 1956. Translated into English by George Gavin Morrice. MR**0080930** - Curt McMullen,
*Families of rational maps and iterative root-finding algorithms*, Ann. of Math. (2)**125**(1987), no. 3, 467–493. MR**890160**, DOI 10.2307/1971408 - Alice Medvedev and Thomas Scanlon,
*Invariant varieties for polynomial dynamical systems*, Ann. of Math. (2)**179**(2014), no. 1, 81–177. MR**3126567**, DOI 10.4007/annals.2014.179.1.2 - John Milnor,
*On Lattès maps*, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR**2348953**, DOI 10.4171/011-1/1 - John Milnor,
*Dynamics in one complex variable*, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR**2193309** - Fedor Pakovich,
*On semiconjugate rational functions*, Geom. Funct. Anal.**26**(2016), no. 4, 1217–1243. MR**3558309**, DOI 10.1007/s00039-016-0383-6 - Fedor Pakovich,
*On algebraic curves $A(x)-B(y)=0$ of genus zero*, Math. Z.**288**(2018), no. 1-2, 299–310. MR**3774414**, DOI 10.1007/s00209-017-1889-9 - Fedor Pakovich,
*Recomposing rational functions*, Int. Math. Res. Not. IMRN**7**(2019), 1921–1935. MR**3938311**, DOI 10.1093/imrn/rnx172 - Fedor Pakovich,
*Polynomial semiconjugacies, decompositions of iterations, and invariant curves*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**17**(2017), no. 4, 1417–1446. MR**3752532** - Fedor Pakovich,
*On rational functions whose normalization has genus zero or one*, Acta Arith.**182**(2018), no. 1, 73–100. MR**3740243**, DOI 10.4064/aa170113-28-8 - F. Pakovich,
*Semiconjugate rational functions: a dynamical approach*, Arnold Math. J.**4**(2018), no. 1, 59–68. MR**3810568**, DOI 10.1007/s40598-018-0081-6 - F. Pakovich,
*On generalized Lattès maps,*J. Anal. Math., accepted. - F. Pakovich,
*Algebraic curves $A^{\circ l}(x)-U(y) = 0$ and arithmetic of orbits of rational functions*, Mosc. Math. J.**20**(2020), no. 1, 153–183. MR**4060316**, DOI 10.17323/1609-4514-2020-20-1-153-183 - J. F. Ritt,
*On the iteration of rational functions*, Trans. Amer. Math. Soc.**21**(1920), no. 3, 348–356. MR**1501149**, DOI 10.1090/S0002-9947-1920-1501149-6 - J. F. Ritt,
*Permutable rational functions*, Trans. Amer. Math. Soc.**25**(1923), no. 3, 399–448. MR**1501252**, DOI 10.1090/S0002-9947-1923-1501252-3

## Additional Information

**Fedor Pakovich**- Affiliation: Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva, 8410501 Israel
- MR Author ID: 602219
- Email: pakovich@math.bgu.ac.il
- Received by editor(s): April 23, 2019
- Received by editor(s) in revised form: July 11, 2020
- Published electronically: October 7, 2020
- Additional Notes: This research was partially supported by the ISF, Grants No. 1432/18
- © Copyright 2020 by the author
- Journal: Conform. Geom. Dyn.
**24**(2020), 202-229 - MSC (2010): Primary 30D05, 37P05
- DOI: https://doi.org/10.1090/ecgd/354
- MathSciNet review: 4159155